13 research outputs found

    RF techniques for spill quality improvement in the SPS

    Get PDF
    The CERN Super Proton Synchrotron (SPS) aims at providing stable proton spills of several seconds to the North Area (NA) fixed target experiments via third-integer resonant slow extraction. However, low-frequency power converter ripple (primarily at 50 and 100 Hz) and high-frequency structures (mainly at harmonics of the revolution frequency) modulate the extracted intensity, which can compromise the performance of the data acquisition systems of the NA experiments. In this contribution, the implementation of Radio Frequency (RF) techniques for spill quality improvement is explored, with particular focus on empty bucket channelling. It is shown that both the main RF systems (at 200 and 800 MHz) can be successfully exploited to improve the SPS slow extraction

    AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

    Get PDF
    The AWAKE Collaboration has been formed in order to demonstrate proton-driven plasma wakefield acceleration for the first time. This acceleration technique could lead to future colliders of high energy but of a much reduced length when compared to proposed linear accelerators. The CERN SPS proton beam in the CNGS facility will be injected into a 10 m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20 MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial three-four years experimental program. The experiment will inform future larger-scale tests of proton-driven plasma wakefield acceleration and applications to high energy colliders

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Millisecond burst extractions from synchrotrons using RF phase displacement acceleration

    No full text
    FLASH radiation therapy calls for the delivery of fast bursted spills of particles with dose delivery times of the order of milliseconds. The requirements overlap with fundamental physics experimental requests that are being studied at CERN, albeit at very different energy scales. In this contribution, a scheme for extracting millisecond bursts from synchrotrons is explored by controlling a third-integer resonant and chromatic extraction with RF phase displacement acceleration. The scheme would be implementable in existing medical and experimental synchrotron facilities. Using a model of the CERN Proton Synchrotron, both single-burst and multi-burst extractions are simulated. Results show that 80 - 90 % of the total beam intensity is extracted in a single burst of 40 − 60 ms. This would correspond to a ∌10 ms burst in a typical medical synchrotron, namely the one outlined in the Proton Ion Medical Machine Study. A set of 3 consecutive bursts of 30 ms was simulated in the Proton Synchrotron with optimised machine parameters

    The Challenge of Interfacing the Primary Beam Lines for the AWAKE Project at CERN

    No full text
    The Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN foresees the simultaneous operation of a proton, a laser and an electron beam. The first stage of the experiment will consist in proving the self-modulation, in the plasma, of a long proton bunch into micro-bunches. The success of this experiment requires an almost perfect concentricity of the proton and laser beam, over the full length of the plasma cell. The complexity of integrating the laser into the proton beam line and fulfilling the strict requirements in terms of pointing precision of the proton beam at the plasma cell are described. The second stage of the experiment foresees also the injection of electron bunches to probe the accelerating wakefields driven by the proton beam. Studies were performed to evaluate the possibility of injecting the electron beam parallel and with an offset to the beam axis. This option would imply that protons and electrons will have to share the last few meters of a common beam line. Issues and possible solutions for this case are presented

    Upgrade of the SPS Injection Kicker System for the LHC High Luminosity Operation with Heavy Ion Beam

    No full text
    In the context of the LHC High Luminosity Upgrade project a performance upgrade for heavy ions is envisaged. One of the performance limitations is the rise time of the present SPS injection kicker system MKP. A reduction of the rise time for lead ions was studied in line with a modification of the whole injection system. This paper briefly describes the different rise time options studied for an initially proposed dedicated ion kicker system MKP-I, focuses however on a cost effective alternative using the presently installed 12 MKPS magnets connected to a new fast pulse forming line. As only 12 out of the 16 injection kicker magnets would be fast enough to be used in an upgraded system, additional deflection has to be provided by the septa. The beam optics for that variant is highlighted and first requirements for the septum elements are stipulated. The paper concludes with a failure analysis of the proposed scheme

    Feasibility Studies for the Extraction of both LHC Beams from CERN SPS using a Common Kicker

    No full text
    The CERN Super Proton Synchrotron has to fulfil the demanding intensity specifications for the High Luminosity LHC (HL-LHC) era, with a doubling of the presently achieved operational beam intensity. One of the main problems to be addressed is given by impedance-driven beam instabilities. About 40% of the total measured SPS impedance is due to the kickers, of which the extraction kickers in two of the SPS straight sections are the largest systems. A potential upgrade is explored which would strongly reduce the number of extraction kickers required in the SPS, by performing non-local extraction. In this scenario LHC Beam 1 would be kicked by the extraction kicker in SPS Long Straight Section 4 (LSS4), normally only used for Beam 2, to be extracted in LSS6. The concept and the expected performance of such a scheme are presented along with detailed simulation results

    Performance Studies of the SPS Beam Dump System for HL-LHC Beams

    No full text
    The Super Proton Synchrotron (SPS) beam dump system is a concern for the planned High Luminosity LHC (HL-LHC) operation. The system has initially been designed for very different beam parameters compared to those which will reign after the completion of the LHC injectors upgrade, when the SPS will have to operate with unprecedented beam brightness. This paper describes the relevant operational and failure modes of the dump system together with the expected beam loading levels. Tracking studies are presented, considering both normal operation and failure scenarios, with particular attention to the location and level of proton losses. First FLUKA investigations and thermo-mechanical analysis of the high-energy absorber block are described
    corecore