5 research outputs found

    Microbial Diversity in Opalinus Clay and Interaction of Dominant Microbial Strains with Actinides (Final Report BMWi Project No.: 02 E 10618)

    Get PDF
    For the first time microbial tDNA could be isolated from 50 g unperturbed Mont Terri Opalinus Clay. Based on the analysis of the tDNA the bacterial diversity of the unperturbed clay is dominated by representatives of Firmicutes, Betaproteobacteria, and Bacteriodetes. Firmicutes also dominate after treatment of the clay with R2A medium. Bacteria isolated from Mont Terri Opalinus Clay on R2A medium were related to Sporomusa spp., Paenibacillus spp., and Clostridium spp.. All further investigations are concentrated on the unique isolates Sporomusa sp. MT-2 and Paenibacillus sp. MT-2. Cells of the type Sporomusa sp. MT-2 and Paenibacillus sp. MT-2 were comprehensively analyzed in terms of growing, morphology, functional groups of the cell envelope, and cell membrane structure. Strong actinide(An)/lanthanide(Ln)-interactions with the Opalinus Clay isolates and the Äspö-strain Pseudomonas fluorescens (CCUG 32456) could be determined within a broad pH range (2-8). The metals bind as a function of pH on protonated phosphoryl, carboxyl and deprotonated phosphoryl sites of the respective cell membrane. The thermodynamic surface complexation constants of bacterial An/Ln-species were determined and can be used in modeling programs. Depending on the used An different interaction mechanisms were found (U(VI): biosorption, partly biomineralisation; Cm(III): biosorption, indications for embedded Cm(III); Pu: biosorption, bioreduction and indications for embedded Pu). Different strategies of coping with U(VI) were observed comparing P. fluorescens planktonic cells and biofilms under the chosen experimental conditions. An enhanced capability of the biofilm to form meta-autunite in comparison to the planktonic cells was proven. Conclusively, the P. fluorescens biofilm is more efficient in U(VI) detoxification. In conclusion, Mont Terri Opalinus Clay contains bacterial communities, that may influence the speciation and hence the migration behavior of selected An/Ln under environmental conditions

    Chondrocytes respond to an altered heparan sulfate composition with distinct changes of heparan sulfate structure and increased levels of chondroitin sulfate

    No full text
    Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1(gt/gt) mice) or HS lacking 2-O-sulfation (Hs2st1(-/-) mice). Analysis by RPIP-HPLC revealed an increased level of sulfated disaccarides not affected by the mutation in both mouse lines indicating that chondrocytes attempt to restore a critical level of sulfation. In addition, in both mutant lines we also detected significantly elevated levels of CS. Size exclusion chromatography further demonstrated that Ext1(gt/gt) mutants produce more but shorter CS chains, while the CS chains produced by (Hs2st1(-/-) mice) mutants are of similar length to that of wild type littermates indicating that chondrocytes produce more rather than longer CS chains. Expression analysis revealed an upregulation of aggrecan, which likely carries most of the additionally produced CS. Together the results of this study demonstrate for the first time that not only a reduced HS synthesis but also an altered HS structure leads to increased levels of CS in mammalian tissues. Furthermore, as chondrocytes produce 100-fold more CS than HS the increased CS levels point to an active, precursor-independent mechanism that senses the quality of HS in a vast excess of CS. Interestingly, reducing the level of cell surface CS by chondroitinase treatment leads to reduced Bmp2 induced Smad1/5/9 phosphorylation. In addition, Erk phosphorylation is increased independent of Fgf18 treatment indicating that both, HS and CS, affect growth factor signaling in chondrocytes in distinct manners

    Microbial Diversity in Opalinus Clay and Interaction of Dominant Microbial Strains with Actinides (Final Report BMWi Project No.: 02 E 10618)

    Get PDF
    For the first time microbial tDNA could be isolated from 50 g unperturbed Mont Terri Opalinus Clay. Based on the analysis of the tDNA the bacterial diversity of the unperturbed clay is dominated by representatives of Firmicutes, Betaproteobacteria, and Bacteriodetes. Firmicutes also dominate after treatment of the clay with R2A medium. Bacteria isolated from Mont Terri Opalinus Clay on R2A medium were related to Sporomusa spp., Paenibacillus spp., and Clostridium spp.. All further investigations are concentrated on the unique isolates Sporomusa sp. MT-2 and Paenibacillus sp. MT-2. Cells of the type Sporomusa sp. MT-2 and Paenibacillus sp. MT-2 were comprehensively analyzed in terms of growing, morphology, functional groups of the cell envelope, and cell membrane structure. Strong actinide(An)/lanthanide(Ln)-interactions with the Opalinus Clay isolates and the Äspö-strain Pseudomonas fluorescens (CCUG 32456) could be determined within a broad pH range (2-8). The metals bind as a function of pH on protonated phosphoryl, carboxyl and deprotonated phosphoryl sites of the respective cell membrane. The thermodynamic surface complexation constants of bacterial An/Ln-species were determined and can be used in modeling programs. Depending on the used An different interaction mechanisms were found (U(VI): biosorption, partly biomineralisation; Cm(III): biosorption, indications for embedded Cm(III); Pu: biosorption, bioreduction and indications for embedded Pu). Different strategies of coping with U(VI) were observed comparing P. fluorescens planktonic cells and biofilms under the chosen experimental conditions. An enhanced capability of the biofilm to form meta-autunite in comparison to the planktonic cells was proven. Conclusively, the P. fluorescens biofilm is more efficient in U(VI) detoxification. In conclusion, Mont Terri Opalinus Clay contains bacterial communities, that may influence the speciation and hence the migration behavior of selected An/Ln under environmental conditions

    Microbial Diversity in Opalinus Clay and Interaction of Dominant Microbial Strains with Actinides (Final Report BMWi Project No.: 02 E 10618)

    No full text
    For the first time microbial tDNA could be isolated from 50 g unperturbed Mont Terri Opalinus Clay. Based on the analysis of the tDNA the bacterial diversity of the unperturbed clay is dominated by representatives of Firmicutes, Betaproteobacteria, and Bacteriodetes. Firmicutes also dominate after treatment of the clay with R2A medium. Bacteria isolated from Mont Terri Opalinus Clay on R2A medium were related to Sporomusa spp., Paenibacillus spp., and Clostridium spp.. All further investigations are concentrated on the unique isolates Sporomusa sp. MT-2 and Paenibacillus sp. MT-2. Cells of the type Sporomusa sp. MT-2 and Paenibacillus sp. MT-2 were comprehensively analyzed in terms of growing, morphology, functional groups of the cell envelope, and cell membrane structure. Strong actinide(An)/lanthanide(Ln)-interactions with the Opalinus Clay isolates and the Äspö-strain Pseudomonas fluorescens (CCUG 32456) could be determined within a broad pH range (2-8). The metals bind as a function of pH on protonated phosphoryl, carboxyl and deprotonated phosphoryl sites of the respective cell membrane. The thermodynamic surface complexation constants of bacterial An/Ln-species were determined and can be used in modeling programs. Depending on the used An different interaction mechanisms were found (U(VI): biosorption, partly biomineralisation; Cm(III): biosorption, indications for embedded Cm(III); Pu: biosorption, bioreduction and indications for embedded Pu). Different strategies of coping with U(VI) were observed comparing P. fluorescens planktonic cells and biofilms under the chosen experimental conditions. An enhanced capability of the biofilm to form meta-autunite in comparison to the planktonic cells was proven. Conclusively, the P. fluorescens biofilm is more efficient in U(VI) detoxification. In conclusion, Mont Terri Opalinus Clay contains bacterial communities, that may influence the speciation and hence the migration behavior of selected An/Ln under environmental conditions
    corecore