210 research outputs found

    Magnetic order and disorder in nanomagnets probed by superconducting vortices

    Get PDF
    We have studied two nanomagnet systems with strong (Co/Pd multilayers) and weak (NdCo alloy films) stray magnetic fields by probing the out-of-plane magnetic states with superconducting vortices. The hybrid samples are made of array of nanomagnets embedded in superconducting Nb thin films. The vortex motion detects relevant magnetic state features, since superconducting vortices are able to discriminate between different magnetic stray field strengths and directions. The usual matching effect between the superconducting vortex lattice and the periodic pinning array can be quenched by means of disorder magnetic potentials with strong stray fields at random. Ordered stray fields retrieve the matching effect and yield asymmetry and shift in the vortex dissipation signal. Furthermore vortices can discriminate the sizes of the nanomagnet magnetic domains, detecting magnetic domain sizes as small as 70 nm. In addition, we observe that the vortex cores play the crucial role instead of the supercurrents around the vortex.Comment: 22 pages, 8 figure

    Burkholderia cenocepacia ET12 strain activates TNFR1 signalling in cystic fibrosis airway epithelial cells

    Full text link
    Burkholderia cenocepacia is an important pulmonary pathogen in individuals with cystic fibrosis (CF). Infection is often associated with severe pulmonary inflammation, and some patients develop a fatal necrotizing pneumonia and sepsis (‘cepacia syndrome’). The mechanisms by which this species causes severe pulmonary inflammation are poorly understood. Here, we demonstrate that B. cenocepacia BC7, a potentially virulent representative of the epidemic ET12 lineage, binds to tumour necrosis factor receptor 1 (TNFR1) and activates TNFR1-related signalling pathway similar to TNF-α, a natural ligand for TNFR1. This interaction participates in stimulating a robust IL-8 production from CF airway epithelial cells. In contrast, BC45, a less virulent ET12 representative, and ATCC 25416, an environmental B. cepacia strain, do not bind to TNFR1 and stimulate only minimal IL-8 production from CF cells. Further, TNFR1 expression is increased in CF airway epithelial cells compared with non-CF cells. We also show that B. cenocepacia ET12 strain colocaizes with TNFR1 in vitro and in the lungs of CF patients who died due to infection with B. cenocepacia, ET12 strain. Together, these results suggest that interaction of B. cenocepacia , ET12 strain with TNFR1 may contribute to robust inflammatory responses elicited by this organism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73011/1/j.1462-5822.2007.01029.x.pd

    Genetic Epidemiology of Tuberculosis Susceptibility: Impact of Study Design

    Get PDF
    Several candidate gene studies have provided evidence for a role of host genetics in susceptibility to tuberculosis (TB). However, the results of these studies have been very inconsistent, even within a study population. Here, we review the design of these studies from a genetic epidemiological perspective, illustrating important differences in phenotype definition in both cases and controls, consideration of latent M. tuberculosis infection versus active TB disease, population genetic factors such as population substructure and linkage disequilibrium, polymorphism selection, and potential global differences in M. tuberculosis strain. These considerable differences between studies should be accounted for when examining the current literature. Recommendations are made for future studies to further clarify the host genetics of TB

    Identification of tetrahydrocarbazoles as novel multifactorial drug candidates for treatment of Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most frequent cause of dementia. To date, there are only a few approved drugs for AD, which show little or no effect on disease progression. Impaired intracellular calcium homeostasis is believed to occur early in the cascade of events leading to AD. Here, we examined the possibility of normalizing the disrupted calcium homeostasis in the endoplasmic reticulum (ER) store as an innovative approach for AD drug discovery. High-throughput screening of a small-molecule compound library led to the identification of tetrahydrocarbazoles, a novel multifactorial class of compounds that can normalize the impaired ER calcium homeostasis. We found that the tetrahydrocarbazole lead structure, first, dampens the enhanced calcium release from ER in HEK293 cells expressing familial Alzheimer's disease (FAD)-linked presenilin 1 mutations. Second, the lead structure also improves mitochondrial function, measured by increased mitochondrial membrane potential. Third, the same lead structure also attenuates the production of amyloid-beta (A beta) peptides by decreasing the cleavage of amyloid precursor protein (APP) by beta-secretase, without notably affecting alpha- and gamma-secretase cleavage activities. Considering the beneficial effects of tetrahydrocarbazoles addressing three key pathological aspects of AD, these compounds hold promise for the development of potentially effective AD drug candidates

    The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models

    Get PDF
    Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032)

    First measurements with the CMS DAQ and timing hub prototype-1

    Get PDF
    The DAQ and Timing Hub is an ATCA hub board designed for the Phase-2 upgrade of the CMS experiment. In addition to providing high-speed Ethernet connectivity to all back-end boards, it forms the bridge between the sub-detector electronics and the central DAQ, timing, and trigger control systems. One important requirement is the distribution of several high-precision, phasestable, and LHC-synchronous clock signals for use by the timing detectors. The current paper presents first measurements performed on the initial prototype, with a focus on clock quality. It is demonstrated that the current design provides adequate clock quality to satisfy the requirements of the Phase-2 CMS timing detectors

    Intravitreal bevacizumab in diabetic retinopathy. Recommendations from the Pan-American Collaborative Retina Study Group (PACORES): The 2016 knobloch lecture

    Get PDF
    The advent of intravitreal anti-vascular endothelial growth factor (anti-VEGF) medications has revolutionized the treatment of diabetic eye diseases. Herein, we report the outcomes of clinical studies carried out by the Pan-American Collaborative Retina Study Group (PACORES), with a specific focus on the efficacy of intravitreal bevacizumab in the management of diabetic macular edema and proliferative diabetic retinopathy. We will also discuss the use of intravitreal bevaci-zumab as a preoperative, adjuvant therapy before vitrectomy for prolif-erative diabetic retinopathy. Copyright © 2017 by Asia Pacific Academy of Ophthalmology

    Macular thickness measurements in healthy Norwegian volunteers: an optical coherence tomography study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethnic, intersubject, interoperator and intermachine differences in measured macular thickness seem to exist. Our purpose was to collect normative macular thickness data in Norwegians and to evaluate the association between macular thickness and age, gender, parity, and contraception status.</p> <p>Methods</p> <p>Retinal thickness was measured by Stratus Optical Coherence Tomography in healthy subjects. Mean macular thickness (MMT) was analyzed by repeated measures ANOVA with three dependent regional MMT-variables for interaction with age, gender, parity and oral contraception use. Exploratory correlation with age by the Pearson correlation test, both before and after stratification by gender was performed. Differences in MMT between older and younger subjects, between oral contraception users and non-users, as well as parous and nulliparous women were studied by post-hoc Student's t-tests.</p> <p>Results</p> <p>Central MMT in Norwegians was similar to values earlier reported in whites. MMT in central areas of 1 and 2.25 mm in diameter were higher in males than in females. In younger subjects (≤43 years) differences in MMT between genders were larger than in the mixed age group, whereas in older subjects (>43 years) the small differences did not reach the set significance level. No differences were found in minimal foveolar thickness (MMFT) between the genders in any age group.</p> <p>Mean foveal thickness (1 mm in diameter) was positively associated with age in females (r = 0.28, p = 0.03). MMFT was positively associated with age in all groups and reached significance both in females and in mixed gender group (r = 0.20, p = 0.041 and r = 0.26, p = 0.044 respectively).</p> <p>Mean foveal thickness and MMFT were significantly higher in parous than in nulliparous women, and age-adjusted ANOVA for MMFT revealed a borderline effect of parity.</p> <p>Conclusions</p> <p>Age and gender should be taken into consideration when establishing normal ranges for MMT in younger subjects. The gender difference in retinal thickness in young, but not older adults suggests a gonadal hormonal influence. The possible association between parity and retinal structure and its clinical relevance, should be studied further.</p

    A View from the Past Into our Collective Future: The Oncofertility Consortium Vision Statement

    Get PDF
    Today, male and female adult and pediatric cancer patients, individuals transitioning between gender identities, and other individuals facing health extending but fertility limiting treatments can look forward to a fertile future. This is, in part, due to the work of members associated with the Oncofertility Consortium. The Oncofertility Consortium is an international, interdisciplinary initiative originally designed to explore the urgent unmet need associated with the reproductive future of cancer survivors. As the strategies for fertility management were invented, developed or applied, the individuals for who the program offered hope, similarly expanded. As a community of practice, Consortium participants share information in an open and rapid manner to addresses the complex health care and quality-of-life issues of cancer, transgender and other patients. To ensure that the organization remains contemporary to the needs of the community, the field designed a fully inclusive mechanism for strategic planning and here present the findings of this process. This interprofessional network of medical specialists, scientists, and scholars in the law, medical ethics, religious studies and other disciplines associated with human interventions, explore the relationships between health, disease, survivorship, treatment, gender and reproductive longevity. The goals are to continually integrate the best science in the service of the needs of patients and build a community of care that is ready for the challenges of the field in the future
    corecore