198 research outputs found
Retroviral Danger from Within: TLR7 Is in Control
In this issue of Immunity, Yu et al. (2012) outline a fascinating model in which TLR7-mediated antibody production acts as a dominant immunosurveillance mechanism against endogenous retroviruses (ERVs), with additional support of TLR3 and TLR9 that function to prevent ERV-mediated malignancy
Immunstimulatorische DNA: Wirkung auf Effektorlymphozyten des angeborenen und adaptiven Immunsystems
DNA sensing unchained
In two recent reports in Science, James Chen and colleagues provide compelling evidence that detection of cytosolic DNA triggers the production of a novel second messenger, cyclic GMP-AMP (cGAMP), which in turn activates a signaling pathway that induces type I interferons (IFNs) in a STING-dependent manner. They further unravel a key role for a so far uncharacterized murine protein E330016A19 (human homolog: C6ORF150), now termed cGAMP synthetase (cGAS), to act as the DNA sensor that generates cGAMP
CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism
The site-specific insertion of heterologous genetic material into genomes provides a powerful means to study gene function. Here we describe a modular system entitled CRISPaint (CRISPR-assisted insertion tagging) that allows precise and efficient integration of large heterologous DNA cassettes into eukaryotic genomes. CRISPaint makes use of the CRISPR-Cas9 system to introduce a double-strand break (DSB) at a user-defined genomic location. A universal donor DNA, optionally provided as minicircle DNA, is cleaved simultaneously to be integrated at the genomic DSB, while processing the donor plasmid at three possible positions allows flexible reading-frame selection. Applying this system allows to create C-terminal tag fusions of endogenously encoded proteins in human cells with high efficiencies. Knocking out known DSB repair components reveals that site-specific insertion is completely dependent on canonical NHEJ (DNA-PKcs, XLF and ligase-4). A large repertoire of modular donor vectors renders CRISPaint compatible with a wide array of applications
Tumor necrosis factor is a necroptosis-associated alarmin
Necroptosis is a form of regulated cell death that can occur downstream of several immune pathways. While previous studies have shown that dysregulated necroptosis can lead to strong inflammatory responses, little is known about the identity of the endogenous molecules that trigger these responses. Using a reductionist in vitro model, we found that soluble TNF is strongly released in the context of necroptosis. On the one hand, necroptosis promotes TNF translation by inhibiting negative regulatory mechanisms acting at the post-transcriptional level. On the other hand, necroptosis markedly enhances TNF release by activating ADAM proteases. In studying TNF release at single-cell resolution, we found that TNF release triggered by necroptosis is activated in a switch-like manner that exceeds steady-state TNF processing in magnitude and speed. Although this shedding response precedes massive membrane damage, it is closely associated with lytic cell death. Further, we found that lytic cell death induction using a pore-forming toxin also triggers TNF shedding, indicating that the activation of ADAM proteases is not strictly related to the necroptotic pathway but likely associated with biophysical changes of the cell membrane upon lytic cell death. These results demonstrate that lytic cell death, particularly necroptosis, is a critical trigger for TNF release and thus qualify TNF as a necroptosis-associated alarmin
An unexpected role for RNA in the recognition of DNA by the innate immune system
A central function of our innate immune system is to sense microbial pathogens through the presence of their nucleic acid genomes or their transcriptional or replicative activity. In mammals, a receptor-based system is mainly responsible for the detection of these "non self" nucleic acids. Tremendous progress has been made in the past years in identifying the host constituents that are required for this intricate task. With regard to the sensing of RNA genome based pathogens by our innate immune system, a picture is emerging that includes certain families of the toll-like receptor family (TLR3, TLR7, TLR8) and the RIG-I like helicases (RIG-I, MDA5 and LGP2). Genetic loss of function studies implicate that the absence of these pathways can lead to a complete lack of recognition of certain RNA viruses. At the same time, intracellular DNA can also trigger potent innate immune responses, yet the players in this field are less clear. We and another group have recently identified a role for RNA polymerase III in the conversion of AT-rich DNA into an RNA ligand that is sensed by the RIG-I pathway. In this review article, we will discuss the mechanisms and implications of this novel pathway
Species-specific detection of the antiviral small-molecule compound CMA by STING
Extensive research on antiviral small molecules starting in the early 1970s has led to the identification of 10-carboxymethyl-9-acridanone (CMA) as a potent type I interferon (IFN) inducer. Up to date, the mode of action of this antiviral molecule has remained elusive. Here we demonstrate that CMA mediates a cell-intrinsic type I IFN response, depending on the ER-resident protein STING. CMA directly binds to STING and triggers a strong antiviral response through the TBK1/IRF3 route. Interestingly, while CMA displays extraordinary activity in phosphorylating IRF3 in the murine system, CMA fails to activate human cells that are otherwise responsive to STING ligands. This failure to activate human STING can be ascribed to its inability to bind to the C-terminal ligand-binding domain of human STING. Crystallographic studies show that two CMA molecules bind to the central Cyclic diguanylate (c-diGMP)-binding pocket of the STING dimer and fold the lid region in a fashion similar, but partially distinct, to c-diGMP. Altogether, these results provide novel insight into ligand-sensing properties of STING and, furthermore, unravel unexpected species-specific differences of this innate sensor
RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate
RNA is sensed by Toll-like receptor 7 (TLR7) and TLR8 or by the RNA helicases LGP2, Mda5 and RIG-I to trigger antiviral responses. Much less is known about sensors for DNA. Here we identify a novel DNA-sensing pathway involving RNA polymerase III and RIG-I. In this pathway, AT-rich double-stranded DNA (dsDNA) served as a template for RNA polymerase III and was transcribed into double-stranded RNA (dsRNA) containing a 5'-triphosphate moiety. Activation of RIG-I by this dsRNA induced production of type I interferon and activation of the transcription factor NF-kappaB. This pathway was important in the sensing of Epstein-Barr virus-encoded small RNAs, which were transcribed by RNA polymerase III and then triggered RIG-I activation. Thus, RNA polymerase III and RIG-I are pivotal in sensing viral DNA
AIM2 inflammasome-derived IL-1 beta induces postoperative ileus in mice
Postoperative ileus (POI) is an intestinal dysmotility frequently occurring after abdominal surgery. An orchestrated neuroimmune response within the muscularis externa (ME) involves activation of resident macrophages, enteric glia and infiltration of blood-derived leukocytes. Interleukin-1 receptor type-I (IL1R1) signalling on enteric glia has been shown to be involved in POI development. Herein we investigated the distinct role of the IL1R1 ligands interleukin (IL)-1 alpha and IL-1 beta and focused on the mechanism of IL-1 beta production. IL-1 alpha and IL-1 beta deficient mice were protected from POI. Bone-marrow transplantation studies indicated that IL-1 alpha originated from radio-resistant cells while IL-1 beta was released from the radio-sensitive infiltrating leukocytes. Mouse strains deficient in inflammasome formation identified the absent in melanoma 2 (AIM2) inflammasome to be crucial for IL-1 beta production in POI. Mechanistically, antibiotic-treated mice revealed a prominent role of the microbiome in IL-1 beta production. Our study provides new insights into distinct roles of IL-1 alpha and IL-1 beta signalling during POI. While IL-1 alpha release is most likely an immediate passive response to the surgical trauma, IL-1 beta production depends on AIM2 inflammasome formation and the microbiome. Selective interaction in this pathway might be a promising target to prevent POI in surgical patients
STING agonism turns human T cells into interferonâproducing cells but impedes their functionality
The cGASâSTING (cyclic GMPâAMP synthaseâstimulator of interferon genes) axis is the predominant DNA sensing system in cells of the innate immune system. However, human T cells also express high levels of STING, while its role and physiological trigger remain largely unknown. Here, we show that the cGASâSTING pathway is indeed functional in human primary T cells. In the presence of a TCRâengaging signal, both cGAS and STING activation switches T cells into type I interferonâproducing cells. However, T cell function is severely compromised following STING activation, as evidenced by increased cell death, decreased proliferation, and impaired metabolism. Interestingly, these different phenotypes bifurcate at the level of STING. While antiviral immunity and cell death require the transcription factor interferon regulatory factor 3 (IRF3), decreased proliferation is mediated by STING independently of IRF3. In summary, we demonstrate that human T cells possess a functional cGASâSTING signaling pathway that can contribute to antiviral immunity. However, regardless of its potential antiviral role, the activation of the cGASâSTING pathway negatively affects T cell function at multiple levels. Taken together, these results could help inform the future development of cGASâSTINGâtargeted immunotherapies
- âŠ