3,288 research outputs found

    A Virtual Element Method for elastic and inelastic problems on polytope meshes

    Full text link
    We present a Virtual Element Method (VEM) for possibly nonlinear elastic and inelastic problems, mainly focusing on a small deformation regime. The numerical scheme is based on a low-order approximation of the displacement field, as well as a suitable treatment of the displacement gradient. The proposed method allows for general polygonal and polyhedral meshes, it is efficient in terms of number of applications of the constitutive law, and it can make use of any standard black-box constitutive law algorithm. Some theoretical results have been developed for the elastic case. Several numerical results within the 2D setting are presented, and a brief discussion on the extension to large deformation problems is included

    Serendipity Face and Edge VEM Spaces

    Full text link
    We extend the basic idea of Serendipity Virtual Elements from the previous case (by the same authors) of nodal (H1H^1-conforming) elements, to a more general framework. Then we apply the general strategy to the case of H(div)H(div) and H(curl)H(curl) conforming Virtual Element Methods, in two and three dimensions

    Serendipity Nodal VEM spaces

    Full text link
    We introduce a new variant of Nodal Virtual Element spaces that mimics the "Serendipity Finite Element Methods" (whose most popular example is the 8-node quadrilateral) and allows to reduce (often in a significant way) the number of internal degrees of freedom. When applied to the faces of a three-dimensional decomposition, this allows a reduction in the number of face degrees of freedom: an improvement that cannot be achieved by a simple static condensation. On triangular and tetrahedral decompositions the new elements (contrary to the original VEMs) reduce exactly to the classical Lagrange FEM. On quadrilaterals and hexahedra the new elements are quite similar (and have the same amount of degrees of freedom) to the Serendipity Finite Elements, but are much more robust with respect to element distortions. On more general polytopes the Serendipity VEMs are the natural (and simple) generalization of the simplicial case

    Lowest order Virtual Element approximation of magnetostatic problems

    Full text link
    We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic field H\mathbf{H} on each edge, and the vertex values of the Lagrange multiplier pp (used to enforce the solenoidality of the magnetic induction B=μH\mathbf{B}=\mu\mathbf{H}). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called "first kind N\'ed\'elec" elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions
    • …
    corecore