16,379 research outputs found
Semi-Classical Quantization of Circular Strings in De Sitter and Anti De Sitter Spacetimes
We compute the {\it exact} equation of state of circular strings in the (2+1)
dimensional de Sitter (dS) and anti de Sitter (AdS) spacetimes, and analyze its
properties for the different (oscillating, contracting and expanding) strings.
The string equation of state has the perfect fluid form with
the pressure and energy expressed closely and completely in terms of elliptic
functions, the instantaneous coefficient depending on the elliptic
modulus. We semi-classically quantize the oscillating circular strings. The
string mass is being the Casimir operator,
of the -dS [-AdS] group, and is
the Hubble constant. We find \alpha'm^2_{\mbox{dS}}\approx 5.9n,\;(n\in N_0),
and a {\it finite} number of states N_{\mbox{dS}}\approx 0.17/(H^2\alpha') in
de Sitter spacetime; m^2_{\mbox{AdS}}\approx 4H^2n^2 (large ) and
N_{\mbox{AdS}}=\infty in anti de Sitter spacetime. The level spacing grows
with in AdS spacetime, while is approximately constant (although larger
than in Minkowski spacetime) in dS spacetime. The massive states in dS
spacetime decay through tunnel effect and the semi-classical decay probability
is computed. The semi-classical quantization of {\it exact} (circular) strings
and the canonical quantization of generic string perturbations around the
string center of mass strongly agree.Comment: Latex, 26 pages + 2 tables and 5 figures that can be obtained from
the authors on request. DEMIRM-Obs de Paris-9404
Web based system architecture for long pulse remote experimentation
Remote experimentation (RE) methods will be essential in next generation fusion devices. Requirements for long pulse RE will be: on-line data visualization, on-line data acquisition processes monitoring and on-line data acquisition systems interactions (start, stop or set-up modifications). Note that these methods are not oriented to real-time control of fusion plant devices.
INDRA Sistemas S.A., CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) and UPM (Universidad Politécnica de Madrid) have designed a specific software architecture for these purposes. The architecture can be supported on the BeansNet platform, whose integration with an application server provides an adequate solution to the requirements. BeansNet is a JINI based framework developed by INDRA, which makes easy the implementation of a remote experimentation model based on a Service Oriented Architecture. The new software architecture has been designed on the basis of the experience acquired in the development of an upgrade of the TJ-II remote experimentation system
- …