72 research outputs found
On the forward-backward correlations in a two-stage scenario
It is demonstrated that in a two-stage scenario with elementary Poissonian
emitters of particles (colour strings) arbitrarily distributed in their number
and average multiplicities, the forward- backward correlations are completely
determined by the final distribution of the forward particles. The observed
linear form of the correlations then necessarily requires this distribution to
have a negative binomial form. For emitters with a negative binomial
distribution of the produced particles distributed so as to give the final
distribution also of a negative binomial form, the forward-backward
correlations have an essentially non-linear form, which disagrees with the
experimental data.Comment: 14 pages in LaTex, 1 figure in Postscrip
Anisotropic flows from colour strings: Monte-Carlo simulations
By direct Monte-Carlo simulations it is shown that the anisotropic flows can
be successfully described in the colour string picture with fusion and
percolation provided anisotropy of particle emission from the fused string is
taken into account. Quenching of produced particles in the strong colour field
of the string is the basic mechanism for this anisotropy. The concrete
realization of this mechanism is borrowed from the QED. Due to dependence of
this mechanism on the external field strength the found flows grow with energy,
with values for at LHC energies greater by ~15% than at RHIC energies.Comment: New version with a non-static distribution of string
Pion emission from the T2K replica target: method, results and application
The T2K long-baseline neutrino oscillation experiment in Japan needs precise
predictions of the initial neutrino flux. The highest precision can be reached
based on detailed measurements of hadron emission from the same target as used
by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The
corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at
the CERN SPS using a replica of the T2K graphite target. In this paper details
of the experiment, data taking, data analysis method and results from the 2007
pilot run are presented. Furthermore, the application of the NA61/SHINE
measurements to the predictions of the T2K initial neutrino flux is described
and discussed.Comment: updated version as published by NIM
A new SPS programme
A new experiemntal program to study hadron production in hadron-nucleus and nucleus-nucleus collisions at the CERN SPS has been recently proposed by the NA49-future collaboration. The physics goals of the program are: (i) search for the critical point of strongly interacting matter and a study of the properties of the onset of deconfinemnt in nucleus-nucleus collisions, (ii) measurements of correlations, fluctuations and hadron spectra at high transverse momentum in proton-nucleus collisions needed as for better understanding of nucleus-nucleus results, (iii) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger Observatory and KASCADE) expriments. The physics of the nucleus-nucleus program is reviewed in this presentation
Measurements of and production in proton–proton interactions at in the NA61/SHINE experiment
Double-differential yields of and
resonances produced in \pp interactions
were measured at a laboratory beam momentum of 158~\GeVc. This measurement is
the first of its kind in \pp interactions below LHC energies. It was performed
at the CERN SPS by the \NASixtyOne collaboration. Double-differential
distributions in rapidity and transverse momentum were obtained from a sample
of 2610 inelastic events. The spectra are extrapolated to full phase
space resulting in mean multiplicity of (6.73
0.25 0.67) and (2.71
0.18 0.18). The rapidity and transverse momentum
spectra and mean multiplicities were compared to predictions of string-hadronic
and statistical model calculations
Measurements of and production in proton–proton interactions at in the NA61/SHINE experiment
International audienceThe production of and hyperons in inelastic p+p interactions is studied in a fixed target experiment at a beam momentum of 158 . Double differential distributions in rapidity and transverse momentum are obtained from a sample of 33M inelastic events. They allow to extrapolate the spectra to full phase space and to determine the mean multiplicity of both and . The rapidity and transverse momentum spectra are compared to transport model predictions. The mean multiplicity in inelastic p+p interactions at 158 is used to quantify the strangeness enhancement in A+A collisions at the same centre-of-mass energy per nucleon pair
Search for the QCD critical point at SPS energies
Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctuations, as well as baryon and anti-baryon transverse mass spectra which are expected to be sensitive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment at the SPS is also discussed.Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctuations, as well as baryon and anti-baryon transverse mass spectra which are expected to be sensitive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment at the SPS is also discussed
Open charm measurements in NA61/SHINE at CERN SPS
The measurements of open charm production was proposed as an important tool to investigate the properties of
the hot and dense matter formed in nucleus-nucleus collisions as well as to provide the means for model independent interpretation of the existing data on J/ψ suppression. Recently, the experimental setup of the NA61/SHINE experiment was supplemented with a Vertex Detector which was motivated by the importance and the possibility of the first
direct measurements of open charm meson production in heavy ion collisions at SPS energies. First test data taken in December 2016 on Pb+Pb collisions at 150A GeV/c allowed to validate the general concept of D0 meson detection via its D0 → π+ + K− decay channel and delivered a first indication of open charm production.
The physics motivation of open charm measurements at SPS energies, pilot results on open charm production, and finally, the future plans of open charm measurements in the NA61/SHINE experiment after LS2 are presented
Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron
Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605
- …