390 research outputs found

    Integrated packaging solutions and hotplates for a miniature atomic clock and other microsystems

    Get PDF
    This thesis aimed at developing innovative packaging solutions for a miniature atomic clock and other microsystems in the cm-scale, i.e. somewhat larger than what is practical for full "chip-scale" device-package integration using clean-room technologies for fabrication of microelectromechanical systems (MEMS). Besides well-defined and robust mechanical attachment, such packaging solutions must provide reliable electrical interconnection with the other system components, and, if needed, additional functions such as local temperature control, insulation from electrical magnetic or temperature perturbations, chemical separation (hermeticity). In order to accomplish this objective, different packaging technologies and modules were developed, fabricated and characterized in the frame of this thesis, with particular emphasis on the packaging of a miniature double-resonance (DR) rubidium atomic clock, which is an ideal demonstration platform given the associated large variety of requirements. First, the possibility of encapsulating the reactive Rb metal in ceramic / glass substrates using soldering was explored, with the aim to achieve simple and reliable fabrication of miniature atomic clock elements such as the reference cell and the Rb lamp. After a thorough literature review investigation of the metallurgical interactions between rubidium and materials used in packaging such as solder (Sn, Pb, Bi..) and thick-film metallizations metals (Ag, Pd, Au, 2 Pt...), an innovative design for a Rb reference cell (dimensions 10 × 12 mm ) is presented. The cell is based on a multifunctional low-temperature cofired ceramic (LTCC) spacer, closed by two glass windows allowing light transmission and acting as lids. Bonding is achieved by low-temperature soldering, avoiding exposing Rb to high temperatures. The use of LTCC as the main substrate material for Rb vapor cells in principle allows further integration of necessary functions for the Rb lamp and reference cell, such as temperature regulation, excitation / microwave resonator electrodes, impedance-matching passive components (lamp), and coil for static magnetic field generation (reference). In this work, to test the hermeticity of the bonding, a pressure sensor was integrated into the cell by replacing one of the glass windows by a membrane comprising an integrated piezoresistive Wheatstone bridge. In this frame, a new lamination technique for LTCC is proposed. The technique consists in applying a hot-melt adhesive on top of the LTCC green tape, and allows good bonding of the tapes even at low lamination pressure. This technique is particularly attractive for the lamination of LTCC microfluidic devices or membrane pressure sensors, because the low pressure applied during lamination does not affect the shape of the channels in a microfluidic device, or the membrane of the sensor. The resulting cells are shown to be hermetic, and a Rb response could be measured by the project partners. However, heating resulted in loss of this response, indicating Rb depletion by undesired reactions between Rb and the sealing metals or contaminants. This result is somewhat in line with studies made in parallel with the present work on low-temperature indium thermocompression bonding. Therefore, although the results are promising, further optimisation of metallizations, solders and package design is required. An important generic function that may be integrated into LTCC is temperature control. In this frame, a multifunctional LTCC hotplate was designed, fabricated and studied. This device allows controlling the temperature of any object in the cm-scale, such as the abovementioned Rb vapor cells (reference or lamp) and other temperature-sensitive elements used in miniature atomic clocks such as lasers and impedance-matching passive components. Full thermal analysis, mathematical calculations, finite-element simulations and laboratory experiments were performed. The excellent structurability and modest thermal conductivity of LTCC make it much better suited than standard alumina for integrated hotplates, resulting in conduction losses in the LTCC structure being small compared to surface losses by conduction and convection. It is therefore concluded that insulation and/or vacuum packaging techniques are necessary to achieve optimized low-power operation. Although we have seen that LTCC is an excellent integrated packaging platform, there are some limitations for carrying relatively massive components such as the DR atomic clock resonator cavity structure, which in general is a solid metal part. Therefore, an alternative hotplate technology platform, was developed, based on the combination of standard fiberglass-reinforced organic-matrix printed-circuit board (PCB), combined with thick-film alumina heaters. The PCB acts as high-strength, low-cost and readily available mechanical carrier, electrical interconnect and thermal insulator, and the thick-film heaters provide local temperature regulation, with the high thermal conductivity of alumina ensuring good local temperature uniformity. Therefore, such a hybrid PCB-Al2O3 platform constitutes an attractive alternative to LTCC hotplates for benign operating conditions. In conclusion, this work introduced several innovative packaging solutions and techniques, which were successfully applied to various dedicated modules carrying the elements of miniature atomic clocks. Beyond this application, these developments allow us to envision efficient packaging of a wide variety of new miniature devices. Also, new areas for further investigations are suggested, such as long-term metallurgical interactions of alkali metals with solders, hermeticity, optimization of temperature distribution and thermal insulation techniques, as well as reliability at high-temperatures and under severe thermal cycling.This thesis aimed at developing innovative packaging solutions for a miniature atomic clock and other microsystems in the cm-scale, i.e. somewhat larger than what is practical for full "chip-scale" device-package integration using clean-room technologies for fabrication of microelectromechanical systems (MEMS). Besides well-defined and robust mechanical attachment, such packaging solutions must provide reliable electrical interconnection with the other system components, and, if needed, additional functions such as local temperature control, insulation from electrical magnetic or temperature perturbations, chemical separation (hermeticity). In order to accomplish this objective, different packaging technologies and modules were developed, fabricated and characterized in the frame of this thesis, with particular emphasis on the packaging of a miniature double-resonance (DR) rubidium atomic clock, which is an ideal demonstration platform given the associated large variety of requirements. First, the possibility of encapsulating the reactive Rb metal in ceramic / glass substrates using soldering was explored, with the aim to achieve simple and reliable fabrication of miniature atomic clock elements such as the reference cell and the Rb lamp. After a thorough literature review investigation of the metallurgical interactions between rubidium and materials used in packaging such as solder (Sn, Pb, Bi..) and thick-film metallizations metals (Ag, Pd, Au, 2 Pt...), an innovative design for a Rb reference cell (dimensions 10 × 12 mm ) is presented. The cell is based on a multifunctional low-temperature cofired ceramic (LTCC) spacer, closed by two glass windows allowing light transmission and acting as lids. Bonding is achieved by low-temperature soldering, avoiding exposing Rb to high temperatures. The use of LTCC as the main substrate material for Rb vapor cells in principle allows further integration of necessary functions for the Rb lamp and reference cell, such as temperature regulation, excitation / microwave resonator electrodes, impedance-matching passive components (lamp), and coil for static magnetic field generation (reference). In this work, to test the hermeticity of the bonding, a pressure sensor was integrated into the cell by replacing one of the glass windows by a membrane comprising an integrated piezoresistive Wheatstone bridge. In this frame, a new lamination technique for LTCC is proposed. The technique consists in applying a hot-melt adhesive on top of the LTCC green tape, and allows good bonding of the tapes even at low lamination pressure. This technique is particularly attractive for the lamination of LTCC microfluidic devices or membrane pressure sensors, because the low pressure applied during lamination does not affect the shape of the channels in a microfluidic device, or the membrane of the sensor. The resulting cells are shown to be hermetic, and a Rb response could be measured by the project partners. However, heating resulted in loss of this response, indicating Rb depletion by undesired reactions between Rb and the sealing metals or contaminants. This result is somewhat in line with studies made in parallel with the present work on low-temperature indium thermocompression bonding. Therefore, although the results are promising, further optimisation of metallizations, solders and package design is required. An important generic function that may be integrated into LTCC is temperature control. In this frame, a multifunctional LTCC hotplate was designed, fabricated and studied. This device allows controlling the temperature of any object in the cm-scale, such as the abovementioned Rb vapor cells (reference or lamp) and other temperature-sensitive elements used in miniature atomic clocks such as lasers and impedance-matching passive components. Full thermal analysis, mathematical calculations, finite-element simulations and laboratory experiments were performed. The excellent structurability and modest thermal conductivity of LTCC make it much better suited than standard alumina for integrated hotplates, resulting in conduction losses in the LTCC structure being small compared to surface losses by conduction and convection. It is therefore concluded that insulation and/or vacuum packaging techniques are necessary to achieve optimized low-power operation. Although we have seen that LTCC is an excellent integrated packaging platform, there are some limitations for carrying relatively massive components such as the DR atomic clock resonator cavity structure, which in general is a solid metal part. Therefore, an alternative hotplate technology platform, was developed, based on the combination of standard fiberglass-reinforced organic-matrix printed-circuit board (PCB), combined with thick-film alumina heaters. The PCB acts as high-strength, low-cost and readily available mechanical carrier, electrical interconnect and thermal insulator, and the thick-film heaters provide local temperature regulation, with the high thermal conductivity of alumina ensuring good local temperature uniformity. Therefore, such a hybrid PCB-Al2O3 platform constitutes an attractive alternative to LTCC hotplates for benign operating conditions. In conclusion, this work introduced several innovative packaging solutions and techniques, which were successfully applied to various dedicated modules carrying the elements of miniature atomic clocks. Beyond this application, these developments allow us to envision efficient packaging of a wide variety of new miniature devices. Also, new areas for further investigations are suggested, such as long-term metallurgical interactions of alkali metals with solders, hermeticity, optimization of temperature distribution and thermal insulation techniques, as well as reliability at high-temperatures and under severe thermal cycling

    The Actuator Design and the Experimental Tests of a New Technology Large Deformable Mirror for Visible Wavelengths Adaptive Optics

    Full text link
    Recently, Adaptive Secondary Mirrors showed excellent on-sky results in the Near Infrared wavelengths. They currently provide 30mm inter-actuator spacing and about 1 kHz bandwidth. Pushing these devices to be operated at visible wavelengths is a challenging task. Compared to the current systems, working in the infrared, the more demanding requirements are the higher spatial resolution and the greater correction bandwidth. In fact, the turbulence scale is shorter and the parameter variation is faster. Typically, the former is not larger than 25 mm (projected on the secondary mirror) and the latter is 2 kHz, therefore the actuator has to be more slender and faster than the current ones. With a soft magnetic composite core, a dual-stator and a single-mover, VRALA, the actuator discussed in this paper, attains unprecedented performances with a negligible thermal impact. Pre-shaping the current required to deliver a given stroke greatly simplifies the control system, whose output supplies the current generator. As the inductance depends on the mover position, the electronics of this generator, provided with an inductance measure circuit, works also as a displacement sensor, supplying the control system with an accurate feed-back signal. A preliminary prototype, built according to the several FEA thermo-magnetic analyses, has undergone some preliminary laboratory tests. The results of these checks, matching the design results in terms of power and force, show that the the magnetic design addresses the severe specifications

    Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex

    Get PDF
    Published Online 15 October 2021Evidence indicates that the transcranial direct current stimulation (tDCS) has the potential to transiently modulate cognitive function, including age-related changes in brain performance. Only a small number of studies have explored the interaction between the stimulation sites on the scalp, task performance, and brain network connectivity within the frame of physiological aging. We aimed to evaluate the spread of brain activation in both young and older adults in response to anodal tDCS applied to two different scalp stimulation sites: Prefrontal cortex (PFC) and posterior parietal cortex (PPC). EEG data were recorded during tDCS stimulation and evaluated using the Small World (SW) index as a graph theory metric. Before and after tDCS, participants performed a behavioral task; a performance accuracy index was computed and correlated with the SW index. Results showed that the SW index increased during tDCS of the PPC compared to the PFC at higher EEG frequencies only in young participants. tDCS at the PPC site did not exert significant effects on the performance, while tDCS at the PFC site appeared to influence task reaction times in the same direction in both young and older participants. In conclusion, studies using tDCS to modulate functional connectivity and influence behavior can help identify suitable protocols for the aging brain.This work was partially supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and by Basque Government through the BERC 2018–2021 progra

    Editorial

    Get PDF
    EditorialEditoria

    ETHICS AND COMPLIANCE: THE ROLE OF THE LAWYER AND CONTINGENCY

    Get PDF
    Resumo: O presente artigo visa tratar de conceitos éticos e de Compliance e o papel do advogado frente aos desafios da geração de informações financeiros por meio dos relatórios de contingência. Atualmente, nos bancos acadêmicos, não há disciplinas de ensinem a importância dos relatórios financeiros das empresas nem mesmo que treinem os profissionais do direito acerca da avaliação de passivos judiciais e administrativos. Tal situação gera enormes problemas, pois processos judiciais ou administrativos mal avaliados poderão criar desembolsos com condenações inesperados, afetando a saúde financeira de entidades, afetando seu lucro e, consequentemente, alterando a realidade das empresas

    Compliance Tributário e o Crime de Lavagem de Dinheiro: Análise Legal das Medidas Éticas e Sancionatórias: Tax Compliance and the Money Laundering Crime: Legal Analysis of Ethical and Sanctionary Measures

    Get PDF
    O mundo corporativo e fiscal exige cada vez mais cautela, especialmente após a regulamentação legal dos crimes de Lavagem de Dinheiro no Brasil. A postura ética e as sanções que o ordenamento jurídico pátrio impôs causou uma movimentação ao estímulo de técnicas que atuem como preventivas aos atos ilícitos fiscais. Com isso, o Compliance Tributário ganhou não apenas a visibilidade internacional, mas interno-econômica, criando um ambiente empenhado no foco de redução dos comportamentos negativos, afastando a falta de ética e ações que poderiam ser consideradas como atos de corrupção. Cabe principalmente às corporações colaborarem com os procedimentos que visem maior transparência da movimentação monetária? Estaria restrito ao aparato estatal a incumbência da prevenção e repressão dos atos corruptos? Como a Lei Anticorrupção está influenciando a cultura empresarial brasileira? Com essas problemáticas o presente estudo irá se ocupar a desvendar empiricamente suas respostas

    Competencia fiscal internacional: ¿Mera Guerra Fiscal?/ International tax competition: Mere Tax War?

    Get PDF
    La mayoría de países que prometen una tributación baja o nula, ya sea mediante incentivos fiscales o la creación de zonas especiales de exportación, para atraer inversionistas de estados competidores, terminan provocando desequilibrios en los servicios públicos esenciales e incluso en la calidad de vida de sus habitantes. Las distorsiones del mercado creadas por la migración de capitales y la ineficiencia de los servicios públicos generada por la falta de recursos causada por la baja tributación son solo algunos ejemplos de un factor negativo. Este comportamiento se denomina competencia tributaria internacional nociva, que obliga a los Estados a reducir su carga tributaria debido a la presión internacional para mantener sus recursos provenientes de inversiones extranjeras en su territorio. Utilizando una metodología empírica y analizando el comportamiento fiscal de los países en desarrollo a través de doctrinas e informes internacionales sobre cooperación internacional, buscamos revelar cómo la competencia tributaria puede tomar dos caminos completamente diferentes, la competencia nociva y la anti-abusiva.

    Compliance programs and artificial intelligence

    Get PDF
    Nowadays we have been dealing with a significant increase in decisions based, solely, on Big Data and algorithms, which means that many processes are fully automated. Every organization that adopts compliance systems must follow parameters. These parameters are better controlled when used by artificial intelligence, since there is no direct involvement of human beings and, consequently, less chance of error, intentional or not. This illustrates a scenario where the use of artificial intelligence can be more efficient and less costly than other tools, in addition to being more accurate. It is not surprising, therefore, that more and more people talk about algorithmic decisions. Although there have already been several studies on cognitive biases, there are numerous difficulties in dealing with the topic, as many of those who are involved in organizational decisions are considered partial or biased and may not reflect the expected ethical standard. It is believed that the machine tends to fail less, according as it replaces human decisions – considered naturally flawed and impartial. Is it, therefore, an efficient and safe substitute for the implementation and maintenance of compliance systems in organizations

    Ética y cumplimiento en Brasil: ¿que es necesario a las empresas brasileñãs? / Ethics and compliance in Brazil: what is necessary for Brazilian companies?

    Get PDF
    El trabajo que se presenta ahora es fruto del análisis de las necesidades de las empresas brasileñas vertieren sus esfuerzos a la ética y cómo esta ética se desarrolla cuando se crean sistemas de cumpliminento en las empresas. Actualmente, no hay cómo mantenerse en el mercado sin cumplir con los preceptos de la ética y los programas de cumplimiento son la mejor forma de establecer la ética empresarial. 

    Electroencephalographic Rhythms in Alzheimer's Disease

    Get PDF
    Physiological brain aging is characterized by synapses loss and neurodegeneration that slowly lead to an age-related decline of cognition. Neural/synaptic redundancy and plastic remodelling of brain networking, also due to mental and physical training, promotes maintenance of brain activity in healthy elderly subjects for everyday life and good social behaviour and intellectual capabilities. However, age is the major risk factor for most common neurodegenerative disorders that impact on cognition, like Alzheimer's disease (AD). Brain electromagnetic activity is a feature of neuronal network function in various brain regions. Modern neurophysiological techniques, such as electroencephalography (EEG) and event-related potentials (ERPs), are useful tools in the investigation of brain cognitive function in normal and pathological aging with an excellent time resolution. These techniques can index normal and abnormal brain aging analysis of corticocortical connectivity and neuronal synchronization of rhythmic oscillations at various frequencies. The present review suggests that discrimination between physiological and pathological brain aging clearly emerges at the group level, with suggested applications also at the level of single individual. The possibility of combining the use of EEG together with biological/neuropsychological markers and structural/functional imaging is promising for a low-cost, non-invasive, and widely available assessment of groups of individuals at-risk
    corecore