7,370 research outputs found

    Canonical Quantization of Spherically Symmetric Dust Collapse

    Full text link
    Quantum gravity effects are likely to play a crucial role in determining the outcome of gravitational collapse during its final stages. In this contribution we will outline a canonical quantization of the LeMaitre-Tolman-Bondi models, which describe the collapse of spherical, inhomogeneous, non-rotating dust. Although there are many models of gravitational collapse, this particular class of models stands out for its simplicity and the fact that both black holes and naked singularity end states may be realized on the classical level, depending on the initial conditions. We will obtain the appropriate Wheeler-DeWitt equation and then solve it exactly, after regularization on a spatial lattice. The solutions describe Hawking radiation and provide an elegant microcanonical description of black hole entropy, but they raise other questions, most importantly concerning the nature of gravity's fundamental degrees of freedom.Comment: 19 pages no figures. Contribution to a festschrift in honor of Joshua N. Goldber

    Spectrum and Statistical Entropy of AdS Black Holes

    Full text link
    Popular approaches to quantum gravity describe black hole microstates differently and apply different statistics to count them. Since the relationship between the approaches is not clear, this obscures the role of statistics in calculating the black hole entropy. We address this issue by discussing the entropy of eternal AdS black holes in dimension four and above within the context of a midisuperspace model. We determine the black hole eigenstates and find that they describe the quantization in half integer units of a certain function of the Arnowitt-Deser-Misner (ADM) mass and the cosmological constant. In the limit of a vanishing cosmological constant (the Schwarzschild limit) the quantized function becomes the horizon area and in the limit of a large cosmological constant it approaches the ADM mass of the black holes. We show that in the Schwarzschild limit the area quatization leads to the Bekenstein-Hawking entropy if Boltzmann statistics are employed. In the limit of a large cosmological constant the Bekenstein-Hawking entropy can be recovered only via Bose statistics. The two limits are separated by a first order phase transition, which seems to suggest a shift from "particle-like" degrees of freedom at large cosmological constant to geometric degrees of freedom as the cosmological constant approaches zero.Comment: 14 pages. No figures. Some references added. Version to appear in Phys. Rev.

    Spaces for bohemian life in Lisbon

    Get PDF
    For some time the “Commission Internationale pour l’Histoire des Villes“ has been working actively on the comprehensive topic of urban space which is also the aim of this book – result of conferences in Lisbon (2013) and in Clermont-Ferrand (2014). Two thematic priorities are presented in this combined English and French speaking volume: on the one hand cultural-symbolic spaces, on the other hand complexity of urban districts which formed in spite of all diversities collective cities. Continuous transformation of urban space and dichotomy shaped cities: Cities can be understood as space of town rulers, but also as space of a growing “bohème”. The chapter by C. Vaz addresses the spaces of so-called “bohemian life” in Lisbon between 1917 and 1927, focusing on their spatial localisation within the city, as well as on the organisation and the functions of their interior space, their representation in the press, literature and iconography.info:eu-repo/semantics/acceptedVersio

    Role of hexagonal boron nitride in protecting ferromagnetic nanostructures from oxidation

    Full text link
    Ferromagnetic contacts are widely used to inject spin polarized currents into non-magnetic materials such as semiconductors or 2-dimensional materials like graphene. In these systems, oxidation of the ferromagnetic materials poses an intrinsic limitation on device performance. Here we investigate the role of ex-situ transferred chemical vapour deposited hexagonal boron nitride (hBN) as an oxidation barrier for nanostructured cobalt and permalloy electrodes. The chemical state of the ferromagnets was investigated using X-ray photoemission electron microscopy owing to its high sensitivity and lateral resolution. We have compared the oxide thickness formed on ferromagnetic nanostructures covered by hBN to uncovered reference structures. Our results show that hBN reduces the oxidation rate of ferromagnetic nanostructures suggesting that it could be used as an ultra-thin protection layer in future spintronic devices.Comment: 7 pages, 6 figure

    The Quantum Stress-Tensor in Self-Similar Spherical Dust Collapse

    Full text link
    We calculate the quantum stress tensor for a massless scalar field in the 2-d self-similar spherical dust collapse model which admits a naked singularity. We find that the outgoing radiation flux diverges on the Cauchy horizon. This may have two consequences. The resultant back reaction may prevent the naked singularity from forming, thus preserving cosmic censorship through quantum effects. The divergent flux may lead to an observable signature differentiating naked singularities from black holes in astrophysical observations.Comment: Latex File, 19 page
    • …
    corecore