175 research outputs found

    Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs

    Get PDF
    Apoptosis is a physiological cell death process important for development, homeostasis and the immune defence of multicellular animals. The key effectors of apoptosis are caspases, cysteine proteases that cleave after aspartate residues. The inhibitor of apoptosis (IAP) family of proteins prevent cell death by binding to and inhibiting active caspases and are negatively regulated by IAP-binding proteins, such as the mammalian protein DIABLO/Smac. IAPs are characterized by the presence of one to three domains known as baculoviral IAP repeat (BIR) domains and many also have a RING-finger domain at their carboxyl terminus. More recently, a second group of BIR-domain-containing proteins (BIRPs) have been identified that includes the mammalian proteins Bruce and Survivin as well as BIR-containing proteins in yeasts and Caenorhabditis elegans. These Survivin-like BIRPs regulate cytokinesis and mitotic spindle formation. In this review, we describe the IAPs and other BIRPs, their evolutionary relationships and their subcellular and tissue localizations

    Lamin B1 controls oxidative stress responses via Oct-1

    Get PDF
    Interaction of lamins with chromatin and transcription factors regulate transcription. Oct-1 has previously been shown to colocalize partly with B-type lamins and is essential for transcriptional regulation of oxidative stress response genes. Using sequential extraction, co-immunoprecipitation (IP), fluorescence loss in photobleaching, and fluorescence resonance energy transfer, we confirm Oct-1–lamin B1 association at the nuclear periphery and show that this association is lost in Lmnb1Δ/Δ cells. We show that several Oct-1–dependent genes, including a subset involved in oxidative stress response, are dysregulated in Lmnb1Δ/Δ cells. Electrophoretic mobility shift assay and chromatin IP reveal that Oct-1 binds to the putative octamer-binding sequences of the dysregulated genes and that this activity is increased in cells lacking functional lamin B1. Like Oct1−/− cells, Lmnb1Δ/Δ cells have elevated levels of reactive oxygen species and are more susceptible to oxidative stress. Sequestration of Oct-1 at the nuclear periphery by lamin B1 may be a mechanism by which the nuclear envelope can regulate gene expression and contribute to the cellular response to stress, development, and aging

    The Cellular Location of Self-antigen Determines the Positive and Negative Selection of Autoreactive B Cells

    Get PDF
    Systemic autoimmune disease is frequently characterized by the production of autoantibodies against widely expressed intracellular self-antigens, whereas B cell tolerance to ubiquitous and highly expressed extracellular antigens is strictly enforced. To test for differences in the B cell response to intracellular and extracellular self-antigens, we sequestered a tolerogenic cell surface antigen intracellularly by addition of a two amino acid endoplasmic reticulum (ER) retention signal. In contrast to cell surface antigen, which causes the deletion of autoreactive B cells, the intracellularly sequestered self-antigen failed to induce B cell tolerance and was instead autoimmunogenic. The intracellular antigen positively selected antigen-binding B cells to differentiate into B1 cells and induced large numbers of IgM autoantibody-secreting plasma cells in a T-independent manner. By analyzing the impact of differences in subcellular distribution independently from other variables, such as B cell receptor affinity, antigen type, or tissue distribution, we have established that intracellular localization of autoantigen predisposes for autoantibody production. These findings help explain why intracellular antigens are targeted in systemic autoimmune diseases

    Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression

    Get PDF
    Radial organization of nuclei with peripheral gene-poor chromosomes and central gene-rich chromosomes is common and could depend on the nuclear boundary as a scaffold or position marker. To test this, we studied the role of the ubiquitous nuclear envelope (NE) component lamin B1 in NE stability, chromosome territory position, and gene expression. The stability of the lamin B1 lamina is dependent on lamin endoproteolysis (by Rce1) but not carboxymethylation (by Icmt), whereas lamin C lamina stability is not affected by the loss of full-length lamin B1 or its processing. Comparison of wild-type murine fibroblasts with fibroblasts lacking full-length lamin B1, or defective in CAAX processing, identified genes that depend on a stable processed lamin B1 lamina for normal expression. We also demonstrate that the position of mouse chromosome 18 but not 19 is dependent on such a stable nuclear lamina. The results implicate processed lamin B1 in the control of gene expression as well as chromosome position

    HIV protease inhibitors inhibit FACE1/ ZMPSTE24: a mechanism for acquired lipodystrophy in patients on highly active antiretroviral therapy

    Get PDF
    Abstract HIV-PIs (HIV protease inhibitors) have proved to be of great benefit for the millions of people suffering from AIDS. However, one of the side effects of this component of combined highly active antiretroviral therapy is lipodystrophy, which affects a large number of the patients taking this class of drug. It has been shown that many of these protease inhibitors inhibit the ZMPSTE24 enzyme responsible for removing the farnesylated tail of prelamin A, which is a nuclear lamina component that has been implicated in some of the nuclear laminopathies. Build up of this protein somehow leads to acquired lipodystrophy, possibly through its interaction with a transcription factor called SREBP-1 (sterol-regulatory-element-binding protein-1). The downstream effect of this is altered fatty acid metabolism and sterol synthesis, which may cause lipodystrophy in patients. The build-up of this protein also appears to have morphological consequences on the nucleus and we reveal, by dual-axis electron tomography, a complex nucleoplasmic reticulum that forms after HIV-PI treatment as a result of acute farnesylated prelamin A accumulation. A greater understanding of the molecular mechanisms leading to lipodystrophy will hopefully facilitate the design of improved HIV-PIs that do not cause this debilitating side effect

    A novel role for BRCA1 in regulating breast cancer cell spreading and motility

    Get PDF
    BRCA1 interacts with ERM proteins at leading edges and focal adhesion sites and modulates motility via its ubiquitin ligase activity

    Elongation dynamics of amyloid fibrils: a rugged energy landscape picture

    Full text link
    Protein amyloid fibrils are a form of linear protein aggregates that are implicated in many neurodegenerative diseases. Here, we study the dynamics of amyloid fibril elongation by performing Langevin dynamic simulations on a coarse-grained model of peptides. Our simulation results suggest that the elongation process is dominated by a series of local minimum due to frustration in monomer-fibril interactions. This rugged energy landscape picture indicates that the amount of recycling of monomers at the fibrils' ends before being fibrilized is substantially reduced in comparison to the conventional two-step elongation model. This picture, along with other predictions discussed, can be tested with current experimental techniques

    A carboxyl-terminal interaction of lamin B1 is dependent on the CAAX endoprotease Rce1 and carboxymethylation

    Get PDF
    The mammalian nuclear lamina protein lamin B1 is posttranslationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxyl-terminal CAAX motif. In this work, we demonstrate that the CAAX endoprotease Rce1 is required for lamin B1 endoproteolysis, demonstrate an independent pool of proteolyzed but nonmethylated lamin B1, as well as fully processed lamin B1, in interphase nuclei, and show a role for methylation in the organization of lamin B1 into domains of the nuclear lamina. Deficiency in the endoproteolysis or methylation of lamin B1 results in loss of integrity and deformity of the nuclear lamina. These data show that the organization of the nuclear envelope and lamina is dependent on a mechanism involving the methylation of lamin B1, and they identify a potential mechanism of laminopathy involving a B-type lamin

    The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3– and caspase 9–interacting sites

    Get PDF
    The X-linked mammalian inhibitor of apoptosis protein (XIAP) has been shown to bind several partners. These partners include caspase 3, caspase 9, DIABLO/Smac, HtrA2/Omi, TAB1, the bone morphogenetic protein receptor, and a presumptive E2 ubiquitin-conjugating enzyme. In addition, we show here that XIAP can bind to itself. To determine which of these interactions are required for it to inhibit apoptosis, we generated point mutant XIAP proteins and correlated their ability to bind other proteins with their ability to inhibit apoptosis. ∂RING point mutants of XIAP were as competent as their full-length counterparts in inhibiting apoptosis, although impaired in their ability to oligomerize with full-length XIAP. Triple point mutants, unable to bind caspase 9, caspase 3, and DIABLO/HtrA2/Omi, were completely ineffectual in inhibiting apoptosis. However, point mutants that had lost the ability to inhibit caspase 9 and caspase 3 but retained the ability to inhibit DIABLO were still able to inhibit apoptosis, demonstrating that IAP antagonism is required for apoptosis to proceed following UV irradiation
    corecore