267 research outputs found
Large-Scale Investigation of White Matter Structural Differences in Bilingual and Monolingual Children: An Adolescent Brain Cognitive Development Data Study
Emerging research has provided valuable insights into the structural characteristics of the bilingual brain from studies of bilingual adults; however, there is a dearth of evidence examining brain structural alterations in childhood associated with the bilingual experience. This study examined the associations between bilingualism and white matter organization in bilingual children compared to monolingual peers leveraging the large-scale data from the Adolescent Brain Cognitive Development (ABCD) Study. Then, 446 bilingual children (ages 9-10) were identified from the participants in the ABCD data and rigorously matched to a group of 446 monolingual peers. Multiple regression models for selected language and cognitive control white matter pathways were used to compare white matter fractional anisotropy (FA) values between bilinguals and monolinguals, controlling for demographic and environmental factors as covariates in the models. Results revealed significantly lower FA values in bilinguals compared to monolinguals across established dorsal and ventral language network pathways bilaterally (i.e., the superior longitudinal fasciculus and inferior frontal-occipital fasciculus) and right-hemispheric pathways in areas related to cognitive control and short-term memory (i.e., cingulum and parahippocampal cingulum). In contrast to the enhanced FA values observed in adult bilinguals relative to monolinguals, our findings of lower FA in bilingual children relative to monolinguals may suggest a protracted development of white matter pathways associated with language and cognitive control resulting from dual language learning in childhood. Further, these findings underscore the need for large-scale longitudinal investigation of white matter development in bilingual children to understand neuroplasticity associated with the bilingual experience during this period of heightened language learning
Subcortical and Cerebellar Volume Differences in Bilingual and Monolingual Children: An ABCD Study
Research suggests that bilingual children experience an extension or delay in the closing of the sensitive/critical period of language development due to multiple language exposure. Moreover, bilingual experience may impact the development of subcortical regions, although these conclusions are drawn from research with adults, as there is a scarcity of research during late childhood and early adolescence. The current study included 1215 bilingual and 5894 monolingual children from the ABCD Study to examine the relationship between subcortical volume and English vocabulary in heritage Spanish bilingual and English monolingual children, as well as volumetric differences between the language groups. We also examined the unique effects of language usage in bilingual children\u27s subcortical volumes. In general, bilingual children had less cerebellar volume and greater volume in the putamen, thalamus, and globus pallidus than monolingual children. English vocabulary was positively related to volume in the cerebellum, thalamus, caudate, putamen, nucleus accumbens, and right pallidum in all children. Moreover, the positive relationship between vocabulary and volume in the nucleus accumbens was stronger for monolingual adolescents than bilingual adolescents. The results are somewhat in line with existing literature on the dynamic volume adaptation of subcortical brain regions due to bilingual development and experience. Future research is needed to further explore these regions longitudinally across development to examine structural changes in bilingual brains
Effective Connectivity in the Default Mode Network after Paediatric Traumatic Brain Injury
Children who experience a traumatic brain injury (TBI) are at elevated risk for a range of negative cognitive and neuropsychological outcomes. Identifying which children are at greatest risk for negative outcomes can be difficult due to the heterogeneity of TBI. To address this barrier, the current study applied a novel method of characterizing brain connectivity networks, Bayesian multi-subject vector autoregressive modelling (BVAR-connect), which used white matter integrity as priors to evaluate effective connectivity-the time-dependent relationship in functional magnetic resonance imaging (fMRI) activity between two brain regions-within the default mode network (DMN). In a prospective longitudinal study, children ages 8-15âyears with mild to severe TBI underwent diffusion tensor imaging and resting state fMRI 7 weeks after injury; post-concussion and anxiety symptoms were assessed 7 months after injury. The goals of this study were to (1) characterize differences in positive effective connectivity of resting-state DMN circuitry between healthy controls and children with TBI, (2) determine if severity of TBI was associated with differences in DMN connectivity and (3) evaluate whether patterns of DMN effective connectivity predicted persistent post-concussion symptoms and anxiety. Healthy controls had unique positive connectivity that mostly emerged from the inferior temporal lobes. In contrast, children with TBI had unique effective connectivity among orbitofrontal and parietal regions. These positive orbitofrontal-parietal DMN effective connectivity patterns also differed by TBI severity and were associated with persisting behavioural outcomes. Effective connectivity may be a sensitive neuroimaging marker of TBI severity as well as a predictor of chronic post-concussion symptoms and anxiety
âDoing What I Can, but I Got No Magic Wand:â A Snapshot of Early Childhood Educator Experiences and Efforts to Ensure Quality during the COVID-19 Pandemic
The COVID-19 pandemic impacted early childhood programs serving infants, toddlers, and preschoolers in dramatic ways. After temporarily closing, many educators quickly adapted their procedures to ensure children\u27s safety as they reopened to provide childcare for essential workers and then the community at large. This manuscript reports on statewide efforts to continue quality improvement initiatives for early childhood programs amidst the COVID-19 pandemic. We first describe the impacts of the COVID-19 pandemic for over 2000 educators-teachers, administrators, and specialists-who completed surveys in the Spring and Fall of 2020. These survey data come from a statewide system called the Texas Early Childhood Professional Development System (TECPDS), designed to track the professional development needs/progress of early childhood educators. Second, we describe an example of how a statewide professional development and quality improvement program shifted to remote delivery during the pandemic. As an increasing number of educators turn to virtual training resources, we explain lessons learned from these response efforts and how they can inform future virtual professional development efforts, even amidst crisis, to ensure that a focus on quality improvement continues while supporting teachers\u27 individual needs
An Opportunity to Increase Collaborative Science in Fetal, Infant, and Toddler Neuroimaging
The field of fetal, infant, and toddler (FIT) neuroimaging researchâincluding magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography, and functional near-infrared spectroscopy, among othersâoffers pioneering insights into early brain development and has grown in popularity over the past 2 decades. In broader neuroimaging research, multisite collaborative projects, data sharing, and open-source code have increasingly become the norm, fostering big data, consensus standards, and rapid knowledge transfer and development. Given the aforementioned benefits, along with recent initiatives from funding agencies to support multisite and multimodal FIT neuroimaging studies, the FIT field now has the opportunity to establish sustainable, collaborative, and open science practices. By combining data and resources, we can tackle the most pressing issues of the FIT field, including small effect sizes, replicability problems, generalizability issues, and the lack of field standards for data collection, processing, and analysisâtogether. Thus, the goals of this commentary are to highlight some of the potential barriers that have waylaid these efforts and to discuss the emerging solutions that have the potential to revolutionize how we work together to study the developing brain early in life
Cortical Thickness Is Related to Variability in Heritage Bilingual Language Proficiency
Research suggests that bilingual experience is associated with gray matter changes, such that initial language gains are associated with expansion and language expertise is associated with renormalization. Previous studies on language proficiency development primarily focused on between-subjects, quasiexperimental comparisons of monolinguals and bilinguals. This study proposes a new paradigm to examine language expertise and cortical thickness within heritage bilinguals
Genome of Drosophila suzukii, the spotted wing drosophila.
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access
Effect of stocker management program on beef cattle skeletal muscle growth characteristics, satellite cell activity, and paracrine signaling impact on preadipocyte differentiation
The objective of this study was to determine the effect of different stocker management programs on skeletal muscle development and growth characteristics, satellite cell (SC) activity in growing-finishing beef cattle as well as the effects of SC-conditioned media on preadipocyte gene expression and differentiation. Fall-weaned Angus steers (n = 76; 258 ± 28 kg) were randomly assigned to 1 of 4 stocker production systems: 1) grazing dormant native range (NR) supplemented with a 40% CP cottonseed meal-based supplement (1.02 kg â steerâ1 â dâ1) followed by long-season summer grazing (CON, 0.46 kg/d); 2) grazing dormant NR supplemented with a ground corn and soybean meal-based supplement fed at 1% of BW followed by short-season summer grazing (CORN, 0.61 kg/d); 3) grazing winter wheat pasture (WP) at high stocking density (3.21 steers/ha) to achieve a moderate rate of gain (LGWP, 0.83 kg/d); and 4) grazing winter WP at low stocking density (0.99 steers/ha) to achieve a high rate of gain (HGWP, 1.29 kg/d). At the end of the stocker (intermediate harvest, IH) and finishing (final harvest, FH) phases, 4 steers / treatment were harvested and longissimus muscles (LM) sampled for cryohistological immunofluorescence analysis and SC culture assays. At IH, WP steers had greater LM fiber cross-sectional area than NR steers; however, at FH, the opposite was observed (p \u3c 0.0001). At IH, CORN steers had the lowest Myf-5+:Pax7+ SC density (p = 0.020), while LGWP steers had the most Pax7+ SC (p = 0.043). At FH, CON steers had the highest LM capillary density (p = 0.003) and their cultured SC differentiated more readily than all other treatments (p = 0.017). At FH, Pax7 mRNA was more abundant in 14 d-old SC cultures from HGWP cattle (p = 0.03). Preadipocytes exposed to culture media from proliferating SC cultures from WP cattle isolated at FH had more PPARÎł (p = 0.037) and less FABP4 (p = 0.030) mRNA expression compared with NR cattle. These data suggest that different stocker management strategies can impact skeletal muscle growth, SC function, and potentially impact marbling development in growing-finishing beef cattle
Race, Ethnicity and Higher Education in the African Diaspora: Guest Editors\u27 Introductory Note
Authors in this issue of Alliance for African Partnership Perspectives, Race, Ethnicity, and Higher Education in the African Diaspora, responded to a Call for Thought Pieces from anywhere in the worldâurgent, critical reflections of issues around race and ethnicity in higher education institutions and key stakeholder and collaborator organizations in Africa and the African Diaspora.https://scholarworks.smith.edu/afr_books/1008/thumbnail.jp
- âŠ