628 research outputs found
How dynamic are ice-stream beds?
Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3–6 years apart, along a cumulative ∼ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a‾¹, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a‾¹ previously reported from repeat geophysical surveys in West Antarctica
Recommended from our members
Populations of high-value predators reflect the traits of their prey
The extent to which prey traits combine to influence the abundance of predators is still poorly understood, particularly for mixed predators in sympatry and in aquatic ecosystems. In this study, we characterise prey use and distribution in iconic bird (grey wagtails and Eurasian dippers) and fish species (brown trout and Atlantic salmon) to assess whether prey traits could predict populations of these four riverine predators. Specifically, we hypothesised that: 1) prey key traits would predict predator populations more effectively than 2) diversity of prey traits, 3) the taxonomic abundance or richness of prey (known as traditional or mass-effect types of biodiversity) or 4) the prevailing environmental conditions. Combined predator population sizes were predicted better by a few key traits – specifically those revealing prey habitat use, size and drifting behaviour – than by prey diversity or prey trait diversity or environmental conditions. Our findings demonstrate that the complex relationships between prey assemblages and multiple predator species can be represented mechanistically when the key prey traits that govern encounter and consumption rates are identified. Given their apparent potential to reveal trophic relationships, and to complement more traditional measures of prey abundance, we advocate further development of trait-based approaches in predator–prey research
An investigation of minimisation criteria
Minimisation can be used within treatment trials to ensure that prognostic factors are evenly distributed between treatment groups. The technique is relatively straightforward to apply but does require running tallies of patient recruitments to be made and some simple calculations to be performed prior to each allocation. As computing facilities have become more widely available, minimisation has become a more feasible option for many. Although the technique has increased in popularity, the mode of application is often poorly reported and the choice of input parameters not justified in any logical way
Contrasting hydrological controls on bed properties during the acceleration of Pine Island Glacier, West Antarctica
In the Amundsen sector of West Antarctica, the flow of glaciers accelerates when intrusion of warm ocean water onto the continental shelf induces strong melting beneath ice shelves and thinning near the glacier’s grounding lines. Projecting the future of these glaciers is, however, hindered by a poor understanding of the dynamical processes that may exacerbate, or on the contrary modulate, the inland ice sheet response. This study seeks to investigate processes occurring at the base of Pine Island Glacier through numerical inversions of surface velocities observed in 1996 and 2014, a period of time during which the glacier accelerated significantly. The outputs show that substantial changes took place in the basal environment, which we interpreted with models of undrained subglacial till and hydrological routing. The annual basal melt production increased by 25% on average. Basal drag weakened by 15% over nearly two thirds of the region of accelerated flow, largely due to the direct assimilation of locally-produced basal meltwater into the underlying subglacial sediment. In contrast, regions of increased drag are found to follow several of the glacier’s shear margins, and furthermore to coincide with inferred hydrological pathways. We interpret this basal strengthening as signature of an efficient hydrological system, where low-pressure water channels have reduced the surrounding basal water pressure. These are the first identified stabilization mechanisms to have developed alongside Pine Island ice flow acceleration. Indeed, these processes could become more significant with increased meltwater availability and may limit the glacier’s response to perturbation near its grounding line.This work was funded by the Natural Environment Research Council (NERC) iSTAR programme (NE/J005800/1, NE/J005738 and NE/J005754/1) and the Isaac Newton Trust
Experimental observations that simulated active-layer deepening drives deeper rock fracture
The impact of changes in active-layer thickness on the depth of pervasive macrofracture (brecciation) in frost-susceptible bedrock is unclear but important to understanding its physical properties and geohazard potential. Here we report results from a laboratory experiment to test the hypothesis that active-layer deepening drives an increase in the depth of brecciation. The experiment simulated active-layer deepening in 300 mm cubic blocks of limestone (chalk) and sandstone. Temperature, surface heave and strain at depth were measured during 16 freeze–thaw cycles. Macrocracks photographed at intervals were digitally analysed to visualise crack growth and to quantify crack inclination and length. In chalk, an upper horizon of macrocracks developed first at about 100 mm depth in a shallow thaw active layer during cycles 1–8, followed by a lower horizon at about 175‒225 mm depth in a deeper thaw active layer during cycles 9–16. The longest cracks (>35 mm) were most common at inclinations of 0–30° from horizontal, and numerous cracks <5 to 15 mm long developed at inclinations of 40–50°, with some longer vertical to subvertical cracks linking the two brecciated horizons. Overall, the observations support the hypothesis that a thickening active layer drives deeper rock fracture by ice segregation
Antarctic-wide array of high-resolution ice core records reveals pervasive leadpollution began in 1889 and persists today
Interior Antarctica is among the most remote places on Earth and was thought to be beyond the reach of human impacts when Amundsen and Scott raced to the South Pole in 1911. Here we show detailed measurements from an extensive array of 16 ice cores quantifying substantial toxic heavy metal lead pollution at South Pole and throughout Antarctica by 1889 – beating polar explorers by more than 22 years. Unlike the Arctic where lead pollution peaked in the 1970s, lead pollution in Antarctica was as high in the early 20th century as at any time since industrialization. The similar timing and magnitude of changes in lead deposition across Antarctica, as well as the characteristic isotopic signature of Broken Hill lead found throughout the continent, suggest that this single emission source in southern Australia was responsible for the introduction of lead pollution into Antarctica at the end of the 19th century and remains a significant source today. An estimated 660 t of industrial lead have been deposited over Antarctica during the past 130 years as a result of mid-latitude industrial emissions, with regional-to-global scale circulation likely modulating aerosol concentrations. Despite abatement efforts, significant lead pollution in Antarctica persists into the 21st century
Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE
Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE
Anxiolytic Effects of the MCH1R Antagonist TPI 1361-17
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts on the MCH1 receptor. MCH1R is expressed widely throughout the brain, particularly in regions thought to be involved in the regulation of stress and emotional response. The role of MCH in anxiety has been controversial, however. Central administration of MCH has been reported to promote or reduce anxiety-like behaviors. The anxiolytic activity of several MCH1R antagonists has also been debated. To address this issue, we have tested whether TPI 1361-17, a highly specific and high affinity MCH1R antagonist, exerts anxiolytic effects in two commonly used models of anxiety, the elevated plus maze and the light–dark transition test. We show that this MCH1R antagonist exerts potent anxiolytic effects in both assays. Our study therefore supports previous studies indicating that MCH1R antagonists may be useful in the treatment of anxiety
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
- …