10 research outputs found

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Four single-nucleotide polymorphisms (SNPs), rs10088218 (at 8q24), rs2665390 (at 3q25), rs717852 (at 2q31), and rs9303542 (at 17q21), were genotyped in 12,599 BRCA1 and 7,132 BRCA2 carriers, including 2,678 ovarian cancer cases. Associations were evaluated within a retrospective cohort approach. All four loci were associated with ovarian cancer risk in BRCA2 carriers; rs10088218 per-allele hazard ratio (HR) = 0.81 (95% CI: 0.67–0.98) P-trend = 0.033, rs2665390 HR = 1.48 (95% CI: 1.21–1.83) P-trend = 1.8 × 10−4, rs717852 HR = 1.25 (95% CI: 1.10–1.42) P-trend = 6.6 × 10−4, rs9303542 HR = 1.16 (95% CI: 1.02–1.33) P-trend = 0.026. Two loci were associated with ovarian cancer risk in BRCA1 carriers; rs10088218 per-allele HR = 0.89 (95% CI: 0.81–0.99) P-trend = 0.029, rs2665390 HR = 1.25 (95% CI: 1.10–1.42) P-trend = 6.1 × 10−4. The HR estimates for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counseling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    No full text

    Predicted breast and ovarian cancer absolute risks for <i>BRCA1</i> mutation carriers at the 5<sup>th</sup>, 10<sup>th</sup>, 90<sup>th</sup>, and 95<sup>th</sup> percentiles of the combined SNP profile distributions.

    No full text
    <p>The minimum, maximum and average risks are also shown. Predicted cancer risks are based on the associations of known breast or ovarian cancer susceptibility loci (identified through GWAS) with cancer risk for <i>BRCA1</i> mutation carriers and loci identified through the present study. Breast cancer risks based on the associations with: 1q32, 10q25.3, 19p13, 6q25.1, 12p11, <i>TOX3</i>, 2q35, <i>LSP1</i>, <i>RAD51L1</i> (based on HR and minor allele frequency estimates from <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003212#pgen-1003212-t001" target="_blank">Table 1</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003212#pgen-1003212-t002" target="_blank">Table 2</a>, and <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003212#pgen.1003212.s016" target="_blank">Table S4</a>) and <i>TERT </i><a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003212#pgen.1003212-Bojesen1" target="_blank">[31]</a>. Ovarian cancer risks based on the associations with: 9p22, 8q24, 3q25, 17q21, 19p13 (<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003212#pgen-1003212-t001" target="_blank">Table 1</a>) and 17q21.31, 4q32.3 (<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003212#pgen-1003212-t002" target="_blank">Table 2</a>). Only the top SNP from each region was chosen. Average breast and ovarian cancer risks were obtained from published data <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003212#pgen.1003212-Antoniou10" target="_blank">[25]</a>. The methods for calculating the predicted risks have been described previously <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003212#pgen.1003212-Antoniou11" target="_blank">[28]</a>.</p

    Associations with breast or ovarian cancer risk for loci previously reported to be associated with cancer risk for <i>BRCA1</i> mutation carriers.

    No full text
    <p>Freq = frequency of allele 2 in unaffected <i>BRCA1</i> carriers.</p><p>HR = Per allele Hazard Ratio associated with allele 2, under a single disease risk model, unless specified.</p><p>r<sup>2</sup>: correlation between the SNP in the present study and the published SNP.</p>*<p>SNP not in <i>BRCA1</i> GWAS SNP allocation on iCOGS chip.</p>a<p>: rs13387042 was previously found to be associated only under the 2-df model.</p>b<p>: analysis under a competing risks model.</p

    Analysis of associations with breast and ovarian cancer risk simultaneously (competing risks analysis) for SNPs found to be associated with breast or ovarian cancer.

    No full text
    <p>Analysis of associations with breast and ovarian cancer risk simultaneously (competing risks analysis) for SNPs found to be associated with breast or ovarian cancer.</p

    Associations with SNPs at the novel 17q21 region with ovarian cancer risk for <i>BRCA1</i> and <i>BRCA2</i> mutation carriers.

    No full text
    *<p>HRs estimated under the single disease risk model.</p

    Mapping of the 17q21 locus.

    No full text
    <p><i>Top 3 panels:</i> P-values of association (−log<sub>10</sub> scale) with ovarian cancer risk for genotyped and imputed SNPs (1000 Genomes Project CEU), by chromosome position (b.37) at the 17q21 region, for <i>BRCA1</i>, <i>BRCA2</i> mutation carriers and combined. Results based on the kinship-adjusted score test statistic (1 d.f.). <i>Fourth panel:</i> Genes in the region spanning (43.4–44.9 Mb, b.37) and the location of the most significant genotyped SNPs (in red font) and imputed SNPs (in black font). <i>Bottom panel:</i> Pairwise r<sup>2</sup> values for genotyped SNPs on iCOG array in the 17q21 region covering positions (43.4–44.9 Mb, b.37).</p

    Study design for selection of the SNPs and genotyping of <i>BRCA1</i> samples.

    No full text
    <p>GWAS data from 2,727 <i>BRCA1</i> mutation carriers were analysed for associations with breast and ovarian cancer risk and 32,557 SNPs were selected for inclusion on the iCOGS array. A total of 11,705 <i>BRCA1</i> samples (after quality control (QC) checks) were genotyped on the 31,812 <i>BRCA1</i>-GWAS SNPs from the iCOGS array that passed QC. Of these samples, 2,387 had been genotyped at the SNP selection stage and are referred to as “stage 1” samples, whereas 9,318 samples were unique to the iCOGS study (“Stage 2” samples). Next, 17 SNPs that exhibited the most significant associations with breast and ovarian cancer were selected for genotyping in a third stage involving an additional 2,646 <i>BRCA1</i> samples (after QC).</p
    corecore