6 research outputs found

    Resonant phonon-magnon interactions in free-standing metal-ferromagnet multilayer structures

    Full text link
    We analyze resonant magneto-elastic interactions between standing perpendicular spin wave modes (exchange magnons) and longitudinal acoustic phonon modes in free-standing hybrid metal-ferromagnet bilayer and trilayer structures. Whereas the ferromagnetic layer acts as a magnetic cavity, all metal layers control the frequencies and eigenmodes of acoustic vibrations. The here proposed design allows for achieving and tuning the spectral and spatial modes overlap between phonons and magnons that results in their strong resonant interaction. Realistic simulations for gold-nickel multilayers show that sweeping the external magnetic field should allow for observing resonantly enhanced interactions between individual magnon and phonon modes in a broad range of frequencies spanning from tens of GHz up to several hundreds of GHz, which can be finely tuned through the multilayer design. Our results would enable the systematic study and the deep understanding of resonantly enhanced magneto-elastic coupling between individual phonon and magnon modes up to frequencies of great contemporary fundamental and applied interest.Comment: 9 pages, 6 figure

    The Modern Problems of Ultrafast Magnetoacoustics (Review)

    No full text
    International audienc

    Observation of the rare Bs0oμ+μB^0_so\mu^+\mu^- decay from the combined analysis of CMS and LHCb data

    No full text
    corecore