6 research outputs found

    THE IMPROVEMENT OF THE DESIGN METHODS OF THE MODES OF INPUT AND CONSUMPTION OF THE ELECTRIC ENERGY UNDER THE CONDITIONS OF ASYMMETRY AND NON-SINUSOIDALITY OF THE A.C. ELECTRIC THRUST LOAD

    No full text
    To ensure the investigations of the systems of the thrust electric supply, the method of design of the electric power system containing the thrust load, the method of design of the unbalance of the input and consumption of the electric power for the train thrust, within the limits of sections (areas) of the railway, the method of measurement of the equalizing currents in the intersubstation zones, have been developed. In the cource of the theoretical and experimental investigations, the conditions of the rational conjugation of the systems of outside and thrust electric supply have been determined, the measures on the improvement of the electric power counter validity for the trauns thrust have been developed. The results of the work have been used in the electrified railways of the Russian Federation.Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Increase of energy efficiency of electric traction system in operating condition of sectioning posts with electric energy storage units

    No full text
    The increase of energy efficiency of the electric traction system is directed to achieving the target indicators, denoted by the Energy strategy of the OS Β«RZDΒ». One of the basic problems, which must be solved, is the increase of efficiency of the regenerative braking on the railway sections. This could be achieved by receiving regeneration energy. One of the possible decisions is the disposal of the electric energy storage unit in the electric traction system on the sectioning post. For some energy parameters, the installation of storage unit on the sectioning post is more effective in comparison with its location on the traction substations. The analysis of the basic methods of the electric traction system operation when the regenerative braking is applied allows determining the required parameters and finding more effective areas for using the device. The aim of the research is to evaluate the expediency and the efficiency of applying the capacitive energy storage units on the railway posts of the DC sectioning to increase the efficiency of using the regenerative braking as well as to increase the energy efficiency of the electric traction system. Research methods: the simulation modeling of the traction capacity in the electric traction system based on the experimental date, obtained from the measuring system of the DC electric locomotive.Β Results. The authors have analyzed the influence of the capacitive energy storage units, located on the sectioning posts on the operation modes of the DC electric traction system when the regenerative braking is applied. The electric energy storage unit operation was modeled for one of the actual area of the railroad with several areas between substations, on the base of the data, obtained by the results of processing the goods train traction load. The cross-section of a road includes gradients up to 10 ppm, that causes the wide use of the regenerative braking. The authors proposed the algorithm of controlling the operating mode of the electric energy storage unit on the post of the DC sectioning, which is based on measuring voltage level on the wires of the post of the DC sectioning and on the wires of the electric energy storage unit; considered the diagram of controlling the energy storage units with the counter turning on of the election keys, which provides the energy storage charge unit when using the trains with regenerative braking and its discharge at minimal voltage in the wires of the sectioning post by the maximal traction load. It was shown, that the use of the electric energy storage units on the post of the DC sectioning allows increasing the average voltage on the wires of the adjacent traction substations, reducing electric energy losses in the traction system, the level of the traction load of the converting unit input and the total electric power consumption, determined by the connections of the contact network of the traction substations. The authors estimated the influence of the storage unit on the working parameters of the electric traction system. The paper mentions the defects of the considered diagram of the energy storage unit connection to the wires of the DC sectioning post. The defects can be removed by improving the control diagram

    Increase of energy efficiency of electric traction system in operating condition of sectioning posts with electric energy storage units

    No full text
    The increase of energy efficiency of the electric traction system is directed to achieving the target indicators, denoted by the Energy strategy of the OS Β«RZDΒ». One of the basic problems, which must be solved, is the increase of efficiency of the regenerative braking on the railway sections. This could be achieved by receiving regeneration energy. One of the possible decisions is the disposal of the electric energy storage unit in the electric traction system on the sectioning post. For some energy parameters, the installation of storage unit on the sectioning post is more effective in comparison with its location on the traction substations. The analysis of the basic methods of the electric traction system operation when the regenerative braking is applied allows determining the required parameters and finding more effective areas for using the device. The aim of the research is to evaluate the expediency and the efficiency of applying the capacitive energy storage units on the railway posts of the DC sectioning to increase the efficiency of using the regenerative braking as well as to increase the energy efficiency of the electric traction system. Research methods: the simulation modeling of the traction capacity in the electric traction system based on the experimental date, obtained from the measuring system of the DC electric locomotive.Β Results. The authors have analyzed the influence of the capacitive energy storage units, located on the sectioning posts on the operation modes of the DC electric traction system when the regenerative braking is applied. The electric energy storage unit operation was modeled for one of the actual area of the railroad with several areas between substations, on the base of the data, obtained by the results of processing the goods train traction load. The cross-section of a road includes gradients up to 10 ppm, that causes the wide use of the regenerative braking. The authors proposed the algorithm of controlling the operating mode of the electric energy storage unit on the post of the DC sectioning, which is based on measuring voltage level on the wires of the post of the DC sectioning and on the wires of the electric energy storage unit; considered the diagram of controlling the energy storage units with the counter turning on of the election keys, which provides the energy storage charge unit when using the trains with regenerative braking and its discharge at minimal voltage in the wires of the sectioning post by the maximal traction load. It was shown, that the use of the electric energy storage units on the post of the DC sectioning allows increasing the average voltage on the wires of the adjacent traction substations, reducing electric energy losses in the traction system, the level of the traction load of the converting unit input and the total electric power consumption, determined by the connections of the contact network of the traction substations. The authors estimated the influence of the storage unit on the working parameters of the electric traction system. The paper mentions the defects of the considered diagram of the energy storage unit connection to the wires of the DC sectioning post. The defects can be removed by improving the control diagram

    Increase of passage capacity of distributive electric networks with renewable energy sources through their reconfiguration

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ тСхничСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ пропускной способности пСрспСктивных Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСктричСских сСтСй ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³ с возобновляСмыми источниками энСргии Π² Ρ‚Π΅ΠΌΠΏΠ΅ процСссов измСнСния спроса Π½Π° ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡΠ½Π΅Ρ€Π³ΠΈΡŽ. ЦСль: ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ пропускной способности пСрспСктивных Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСктричСских сСтСй ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³ с возобновляСмыми источниками энСргии ΠΏΡƒΡ‚Π΅ΠΌ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ элСктричСских схСм. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹: Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ элСктричСскиС сСти, источники распрСдСлСнной Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мощности, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π² элСктроэнСргСтикС, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ пропускной способности элСктричСской сСти. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: оптимизационная Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π»Π°ΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΈ Π³Ρ€Π°Π½ΠΈΡ†, ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² элСктричСских сСтСй Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡŒ Π² Matlab Simulink. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π΅ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ элСктричСской сСти для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Π΅Π΅ пропускной способности Π½Π° основС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² (статичСская рСконфигурация) ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ потрСблСния элСктроэнСргии Π±Π΅Π· расчСта ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΡ…ΡΡ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Π² Ρ‚Π΅ΠΌΠΏΠ΅ процСссов измСнСния спроса Π½Π° ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡΠ½Π΅Ρ€Π³ΠΈΡŽ (динамичСская рСконфигурация). Для обСспСчСния допустимости Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСктричСских сСтСй ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… (Π½Π° Π±Π°Π·Π΅ возобновляСмых источников) ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… мощностСй ΠΈ спросом Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ динамичСской Ρ€Π΅ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ для тСстовой элСктричСской схСмы Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° управлСния ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ мощности ΠΈ спросом Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎΠ± обоснованности ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ пропускной способности элСктричСской сСти.The relevance of the study is caused by the need to develop technical solutions to increase the capacity of promising distribution electric networks of railways with renewable energy sources in the pace of changing demand for electricity. The aim of research is to increase the capacity of promising distribution electric networks of railways with renewable energy sources through optimal reconfiguration of electrical circuits. Objects: distribution electric networks, sources of distributed generation of active and reactive power, optimization methods for solving problems in the electric power industry, increasing the capacity of the electric network. Methods. Optimization problem was solved by the branch and bound method, simulation modeling of the electrical network modes was performed in Matlab Simulink. Results. The authors have developed the algorithm for reconfiguring the electrical network to increase its capacity based on solving the problems of optimizing normal modes (static reconfiguration) and minimizing power consumption without calculating steady-state modes in the pace of electricity demand change processes (dynamic reconfiguration). To ensure the admissibility of the modes of distribution electric networks, approaches to managing the supply of active (based on renewable sources) and reactive capacities and the demand of active consumers were proposed. The paper introduces the results of implementation of dynamic reconfiguration for the test circuitry without taking into account the power supply and demand management of active consumers, indicating the validity of the proposed approaches to improving the transmission capacity of the electrical network

    Increase of passage capacity of distributive electric networks with renewable energy sources through their reconfiguration

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ тСхничСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ пропускной способности пСрспСктивных Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСктричСских сСтСй ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³ с возобновляСмыми источниками энСргии Π² Ρ‚Π΅ΠΌΠΏΠ΅ процСссов измСнСния спроса Π½Π° ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡΠ½Π΅Ρ€Π³ΠΈΡŽ. ЦСль: ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ пропускной способности пСрспСктивных Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСктричСских сСтСй ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³ с возобновляСмыми источниками энСргии ΠΏΡƒΡ‚Π΅ΠΌ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ элСктричСских схСм. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹: Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ элСктричСскиС сСти, источники распрСдСлСнной Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мощности, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π² элСктроэнСргСтикС, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ пропускной способности элСктричСской сСти. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: оптимизационная Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π»Π°ΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΈ Π³Ρ€Π°Π½ΠΈΡ†, ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² элСктричСских сСтСй Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡŒ Π² Matlab Simulink. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π΅ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ элСктричСской сСти для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Π΅Π΅ пропускной способности Π½Π° основС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² (статичСская рСконфигурация) ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ потрСблСния элСктроэнСргии Π±Π΅Π· расчСта ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΡ…ΡΡ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Π² Ρ‚Π΅ΠΌΠΏΠ΅ процСссов измСнСния спроса Π½Π° ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡΠ½Π΅Ρ€Π³ΠΈΡŽ (динамичСская рСконфигурация). Для обСспСчСния допустимости Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСктричСских сСтСй ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… (Π½Π° Π±Π°Π·Π΅ возобновляСмых источников) ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… мощностСй ΠΈ спросом Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ динамичСской Ρ€Π΅ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ для тСстовой элСктричСской схСмы Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° управлСния ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ мощности ΠΈ спросом Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎΠ± обоснованности ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ пропускной способности элСктричСской сСти.The relevance of the study is caused by the need to develop technical solutions to increase the capacity of promising distribution electric networks of railways with renewable energy sources in the pace of changing demand for electricity. The aim of research is to increase the capacity of promising distribution electric networks of railways with renewable energy sources through optimal reconfiguration of electrical circuits. Objects: distribution electric networks, sources of distributed generation of active and reactive power, optimization methods for solving problems in the electric power industry, increasing the capacity of the electric network. Methods. Optimization problem was solved by the branch and bound method, simulation modeling of the electrical network modes was performed in Matlab Simulink. Results. The authors have developed the algorithm for reconfiguring the electrical network to increase its capacity based on solving the problems of optimizing normal modes (static reconfiguration) and minimizing power consumption without calculating steady-state modes in the pace of electricity demand change processes (dynamic reconfiguration). To ensure the admissibility of the modes of distribution electric networks, approaches to managing the supply of active (based on renewable sources) and reactive capacities and the demand of active consumers were proposed. The paper introduces the results of implementation of dynamic reconfiguration for the test circuitry without taking into account the power supply and demand management of active consumers, indicating the validity of the proposed approaches to improving the transmission capacity of the electrical network

    Increase of energy efficiency of electric traction system in operating condition of sectioning posts with electric energy storage units

    No full text
    ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ энСргСтичСской эффСктивности Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСмы тягового элСктроснабТСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ Π½Π° достиТСниС Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… ЭнСргСтичСской стратСгиСй ОАО Β«Π Π–Π”Β». Одной ΠΈΠ· основных Π·Π°Π΄Π°Ρ‡, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, являСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ эффСктивности Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния Π½Π° участках ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ достигнуто обСспСчСниСм ΠΏΡ€ΠΈΠ΅ΠΌΠ° энСргии Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Одним ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ являСтся Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ накопитСля элСктричСской энСргии Π² систСмС тягового элСктроснабТСния Π½Π° посту сСкционирования, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎ ряду энСргСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈΠΌΠ΅Π½Π½ΠΎ Π½Π° посту сСкционирования установка накопитСля оказываСтся Π±ΠΎΠ»Π΅Π΅ эффСктивно ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π½Π° тяговых подстанциях. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ основных Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСмы тягового элСктроснабТСния Π² условиях примСнСния Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΈ Π½Π°ΠΉΡ‚ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивныС участки примСнСния устройств. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: ΠΎΡ†Π΅Π½ΠΊΠ° цСлСсообразности ΠΈ эффСктивности примСнСния Смкостных Π½Π°ΠΊΠΎΠΏΠΈΡ‚Π΅Π»Π΅ΠΉ элСктричСской энСргии Π½Π° постах сСкционирования ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³ постоянного Ρ‚ΠΎΠΊΠ°, Π² цСлях ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности примСнСния Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ энСргСтичСской эффСктивности систСмы тягового элСктроснабТСния. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования: ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ тяговой Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π² систСмС тягового элСктроснабТСния Π½Π° основС ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… с ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… систСм элСктровозов постоянного Ρ‚ΠΎΠΊΠ°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ИсслСдовано влияниС Смкостных Π½Π°ΠΊΠΎΠΏΠΈΡ‚Π΅Π»Π΅ΠΉ энСргии, располоТСнных Π½Π° постах сСкционирования, Π½Π° Ρ€Π΅ΠΆΠΈΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСмы тягового элСктроснабТСния постоянного Ρ‚ΠΎΠΊΠ° Π² условиях примСнСния Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π°ΠΊΠΎΠΏΠΈΡ‚Π΅Π»Π΅ΠΉ энСргии Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ для ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… участков ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠΉ Π΄ΠΎΡ€ΠΎΠ³ΠΈ, содСрТащих нСсколько мСТподстанционных Π·ΠΎΠ½, Π½Π° основС Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ тяговой Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π³Ρ€ΡƒΠ·ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ΅Π·Π΄Π°. ΠŸΡ€ΠΎΡ„ΠΈΠ»ΡŒ ΠΏΡƒΡ‚ΠΈ рассматриваСмого участка ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠΉ Π΄ΠΎΡ€ΠΎΠ³ΠΈ содСрТит ΡƒΠΊΠ»ΠΎΠ½Ρ‹ Π΄ΠΎ дСсяти ΠΏΡ€ΠΎΠΌΠΈΠ»Π»Π΅, Ρ‡Ρ‚ΠΎ обусловливаСт ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ управлСния Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ накопитСля элСктроэнСргии Π½Π° посту сСкционирования постоянного Ρ‚ΠΎΠΊΠ°, основанный Π½Π° измСрСниях уровня напряТСния Π½Π° ΡˆΠΈΠ½Π°Ρ… поста сСкционирования постоянного Ρ‚ΠΎΠΊΠ° ΠΈ ΡˆΠΈΠ½Π°Ρ… накопитСля энСргии. РассмотрСна схСма управлСния накопитСлями энСргии со встрСчным Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ элСктронных ΠΊΠ»ΡŽΡ‡Π΅ΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π°Ρ заряд накопитСля энСргии ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΏΠΎΠ΅Π·Π΄ΠΎΠ² Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния ΠΈ Π΅Π³ΠΎ разряд ΠΏΡ€ΠΈ минимальном напряТСнии Π½Π° ΡˆΠΈΠ½Π°Ρ… поста сСкционирования ΠΏΡ€ΠΈ максимальной тяговой Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π°ΠΊΠΎΠΏΠΈΡ‚Π΅Π»Π΅ΠΉ энСргии Π½Π° посту сСкционирования постоянного Ρ‚ΠΎΠΊΠ° позволяСт ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ срСднСС напряТСния Π½Π° ΡˆΠΈΠ½Π°Ρ… смСТных тяговых подстанций, ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ элСктроэнСргии Π² тяговой сСти, ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ тяговой Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΏΠΎ Π²Π²ΠΎΠ΄Ρƒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π³Ρ€Π΅Π³Π°Ρ‚Π° ΠΈ суммарный расход элСктроэнСргии, опрСдСляСмый ΠΏΠΎ присоСдинСниям ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΉ сСти тяговых подстанций. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° влияния накопитСля Π½Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСмы тягового элСктроснабТСния. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ нСдостатки рассматриваСмой схСмы ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ накопитСля элСктроэнСргии ΠΊ шинам поста сСкционирования постоянного Ρ‚ΠΎΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ устранСны Π² дальнСйшСм ΠΏΡƒΡ‚Π΅ΠΌ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ схСмы управлСния.The increase of energy efficiency of the electric traction system is directed to achieving the target indicators, denoted by the Energy strategy of the OS Β«RZDΒ». One of the basic problems, which must be solved, is the increase of efficiency of the regenerative braking on the railway sections. This could be achieved by receiving regeneration energy. One of the possible decisions is the disposal of the electric energy storage unit in the electric traction system on the sectioning post. For some energy parameters, the installation of storage unit on the sectioning post is more effective in comparison with its location on the traction substations. The analysis of the basic methods of the electric traction system operation when the regenerative braking is applied allows determining the required parameters and finding more effective areas for using the device. The aim of the research is to evaluate the expediency and the efficiency of applying the capacitive energy storage units on the railway posts of the DC sectioning to increase the efficiency of using the regenerative braking as well as to increase the energy efficiency of the electric traction system. Research methods: the simulation modeling of the traction capacity in the electric traction system based on the experimental date, obtained from the measuring system of the DC electric locomotive. Results. The authors have analyzed the influence of the capacitive energy storage units, located on the sectioning posts on the operation modes of the DC electric traction system when the regenerative braking is applied. The electric energy storage unit operation was modeled for one of the actual area of the railroad with several areas between substations, on the base of the data, obtained by the results of processing the goods train traction load. The cross-section of a road includes gradients up to 10 ppm, that causes the wide use of the regenerative braking. The authors proposed the algorithm of controlling the operating mode of the electric energy storage unit on the post of the DC sectioning, which is based on measuring voltage level on the wires of the post of the DC sectioning and on the wires of the electric energy storage unit; considered the diagram of controlling the energy storage units with the counter turning on of the election keys, which provides the energy storage charge unit when using the trains with regenerative braking and its discharge at minimal voltage in the wires of the sectioning post by the maximal traction load. It was shown, that the use of the electric energy storage units on the post of the DC sectioning allows increasing the average voltage on the wires of the adjacent traction substations, reducing electric energy losses in the traction system, the level of the traction load of the converting unit input and the total electric power consumption, determined by the connections of the contact network of the traction substations. The authors estimated the influence of the storage unit on the working parameters of the electric traction system. The paper mentions the defects of the considered diagram of the energy storage unit connection to the wires of the DC sectioning post. The defects can be removed by improving the control diagram
    corecore