40 research outputs found

    Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma

    Get PDF
    © 2020 We review the challenges of next-generation therapeutics for both systemic and localised delivery to brain tumours and discuss how recent engineering advances may be used to enhance brain penetration of systemic delivery therapies. The unmet clinical need which drug delivery seeks to address is discussed with reference to the therapy obstacles that the intra-tumour heterogeneity of glioma present. The unmet chemistry and biomedical engineering challenge to develop controlled release therapeutics is appraised, with commentary on current success/failures in systemic carrier-mediated delivery, including receptor-targeted, cell-based, blood-brain-barrier disrupting and MRI-guided focused ultrasound. Localised therapeutic delivery is a relatively under-studied research avenue and is discussed with reference to existing technologies in preclinical development. These include convection-enhanced delivery, alternative catheter delivery, and neuro-surgically applied delivery systems such as polymeric hydrogels and interstitial spray. A myriad of nano-scale therapeutic delivery systems is emerging as potential future medicines for malignant brain tumours. Such biomedically-engineered systems will increasingly feature in next-generation neuro-oncological clinical trials to deliver repurposed and experimental therapeutics, aimed at achieving therapeutic drug concentrations in the brain, with associated mortality and morbidity benefits for patients

    Synthesis of methacrylate-terminated block copolymers with reduced transesterification by controlled ring-opening polymerization

    Get PDF
    This work presents a robust method to achieve the synthesis of low molecular weight polyesters 26 via ring-opening polymerization (ROP) initiated by 2-hydroxyethyl-methacrylate (HEMA) 27 when using triazabicyclodecene (TBD) as catalyst. The effect that the HEMA:TBD ratio has 28 upon the final reaction rate and final polymer molecular architecture is discussed. The optimum 29 HEMA:TBD ratio and reaction conditions required to minimize competing transesterification 30 reactions were determined, in order to synthesize successfully the target ROP macromonomer 31 species containing only a single 2-methacryloyloxyethyl end-group. Additionally, to confirm 32 the terminal end-group fidelity of the product macromonomers and confirm TBD utility for 33 block copolymer manufacture, a small series of di-block polyesters were synthesized using 34 TBD and shown to exhibit good control over the final polymer structure whilst negating the 35 side transesterification reactions, irrespective of the monomers used

    Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations

    Get PDF
    Glioblastoma (GBM) is the most common, malignant and aggressive brain tumour in adults. Despite the use of multimodal treatments, involving surgery, followed by concomitant radiotherapy and chemotherapy, the median survival for patients remains less than 15 months from diagnosis. Low penetration of drugs across the blood-brain barrier (BBB) is a dose-limiting factor for systemic GBM therapies, and as a result, post-surgical intracranial drug delivery strategies are being developed to ensure local delivery of drugs within the brain. Here we describe the effects of PEGylated poly(lactide)-poly(carbonate)-doxorubicin (DOX) nanoparticles (NPs) on the metabolic activity of primary cancer cell lines derived from adult patients following neurosurgical resection, and the commercially available GBM cell line, U87. The results showed that non-drug-loaded NPs were well tolerated at concentrations of up to 100 µg/mL while tumour cell-killing effects were observed for the DOX-NPs at the same concentrations. Further experiments evaluated the release of DOX from polymer-DOX conjugate NPs when incorporated in a thermosensitive in situ gelling poly(DL-lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA/PEG) matrix paste, in order to simulate the clinical setting of a locally injected formulation for GBM following surgical tumour resection. These assays demonstrated drug release from the polymer pro-drugs, when in PLGA/PEG matrices of two formulations, over clinically relevant time scales. These findings encourage future in vivo assessment of the potential capability of polymer–drug conjugate NPs to penetrate brain parenchyma efficaciously, when released from existing interstitial delivery systems

    Amphiphilic tri- and tetra-block co-polymers combining versatile functionality with facile assembly into cytocompatible nanoparticles

    Get PDF
    In order for synthetic polymers to find widespread practical application as biomaterials, their syntheses must be easy to perform, utilising freely available building blocks, and should generate products which have no adverse effects on cells or tissue. In addition, it is highly desirable that the synthesis platform for the biomaterials can be adapted to generate polymers with a range of physical properties and macromolecular architectures, and with multiple functional handles to allow derivatisation with 'actives' for sensing or therapy. Here we describe the syntheses of amphiphilic tri-and tetra-block copolymers, using diazabicyclo[5.4.0]undec-5-ene (DBU) as a metal-free catalyst for ring-opening polymerisations of the widely-utilised monomer lactide combined with a functionalised protected cyclic carbonate. These syntheses employed PEGylated macroinitiators with varying chain lengths and architectures, as well as a labile-ester methacrylate initiator, and produced block copolymers with good control over monomer incorporation, molar masses, side-chain and terminal functionality and physico-chemical properties. Regardless of the nature of the initiators, the fidelity of the hydroxyl end group was maintained as confirmed by a second ROP chain extension step, and polymers with acryloyl/methacryloyl termini were able to undergo a second tandem reaction step, in particular thiol-ene click and RAFT polymerisations for the production of hyperbranched materials. Furthermore, the polymer side-chain functionalities could be easily deprotected to yield an active amine which could be subsequently coupled to a drug molecule in good yields. The resultant amphiphilic copolymers formed a range of unimolecular or kinetically-trapped micellar-like nanoparticles in aqueous environments, and the non-cationic polymers were all well-tolerated by MCF-7 breast cancer cells. The rapid and facile route to such highly adaptable polymers, as demonstrated here, offers promise for a range of bio materials applications

    Functionalized block co-polymer pro-drug nanoparticles with anti-cancer efficacy in 3D spheroids and in an orthotopic triple negative breast cancer model

    Get PDF
    Amphiphilic block co-polymers composed of poly(ethylene glycol)-co-poly(lactide)-co-poly(2-((tert-butoxycarbonyl)amino)-3-propyl carbonate) (PEG-pLA-pTBPC) are synthesized in monomer ratios and arrangements to enable assembly into nanoparticles with different sizes and architectures. These materials are based on components in clinical use, or known to be biodegradable, and retain the same fundamental chemistry across 'AB' and 'BAB' block architectures. In MCF7 and MDA-MB-231 breast cancer cells, nanoparticles of < 100 nm are internalized most rapidly, by both clathrin-and caveolin-mediated pathways. In THP-1 cells, polymer architecture and length of the hydrophilic block is the most important factor in the rate of internalization. The organ distributions of systemically injected nanoparticles in healthy mice indicate highest accumulation of the BAB-blocks in lungs and liver and the lowest accumulation in these organs of a methoxyPEG5000-pLA-pTBPC polymer. Conjugation of doxorubicin via a serum-stable urea linker to the carbonate regions of PEG5000-pLA-pTBPC generates self-assembling nanoparticles which are more cytotoxic in 2D, and penetrate further in 3D spheroids of triple negative breast cancer cells, than the free drug. In an aggressive orthotopic triple negative breast cancer mouse model, the methoxyPEG5000-pLA-pTBPC is of similar potency to free doxorubicin but with no evidence of adverse effects in terms of body weight

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore