476 research outputs found

    Stand dynamics modulate water cycling and mortality risk in droughted tropical forest

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long-term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought-related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.This work is a product of UK NERC grant NE/J011002/1 to PM and MM, CNPQ grant 457914/2013-0/MCTI/CNPq/FNDCT/LBA/ESECAFLOR to ACLD, an ARC grant FT110100457 to PM and a UK NERC independent fellowship grant NE/N014022/1 to LR. It was previously supported by NERC NER/A/S/2002/00487, NERC GR3/11706, EU FP5-Carbonsink and EU FP7-Amazalert to PM. RP acknowledges support of MINECO (Spain), grant CGL2014-5583-JIN

    Histopathological characterization of experimentally induced cutaneous loxoscelism in rabbits inoculated with Loxosceles similis venom

    Full text link
    Envenomation by Loxosceles bites is characterized by dermonecrotic and/or systemic features that lead to several clinical signs and symptoms called loxoscelism. Dermonecrotic lesions are preceded by thrombosis of the dermal plexus. Recent studies show that atheromatous plaque is prone to thrombosis due to endothelial cell apoptosis. To the best of our knowledge, there are no reports of microscopic dermal lesion and endothelial cell apoptosis induced by Loxosceles similis venom in the literature. Thus, the aim of the present study is to describe histological lesions induced by L. similis venom in rabbit skin and to elucidate whether apoptosis of endothelial cells is involved in the pathogenesis of loxoscelism. Forty male rabbits were split into two groups: the control group (intradermally injected with 50 µL of PBS) and the experimental group (intradermally injected with 0.5 µg of L. similis crude venom diluted in 50 µL of PBS). After 2, 4, 6 and 8 hours of injection, skin fragments were collected and processed for paraffin or methacrylate embedding. Sections of 5 µm thick were stained by HE, PAS or submitted to TUNEL reaction. Microscopically, severe edema, diffuse heterophilic inflammatory infiltrate, perivascular heterophilic infiltrate, thrombosis, fibrinoid necrosis of arteriolar wall and cutaneous muscle necrosis were observed. Two hours after venom injection, endothelial cells with apoptosis morphology were evidenced in the dermal plexus. Apoptosis was confirmed by TUNEL reaction. It seems that endothelial cell apoptosis and its consequent desquamation is an important factor that induces thrombosis and culminates in dermonecrosis, which is characteristic of cutaneous loxoscelism

    Asymmetric Dispersal and Colonization Success of Amazonian Plant-Ants Queens

    Get PDF
    The dispersal ability of queens is central to understanding ant life-history evolution, and plays a fundamental role in ant population and community dynamics, the maintenance of genetic diversity, and the spread of invasive ants. In tropical ecosystems, species from over 40 genera of ants establish colonies in the stems, hollow thorns, or leaf pouches of specialized plants. However, little is known about the relative dispersal ability of queens competing for access to the same host plants. We used empirical data and inverse modeling—a technique developed by plant ecologists to model seed dispersal—to quantify and compare the dispersal kernels of queens from three Amazonian ant species that compete for access to host-plants. We found that the modal colonization distance of queens varied 8-fold, with the generalist ant species (Crematogaster laevis) having a greater modal distance than two specialists (Pheidole minutula, Azteca sp.) that use the same host-plants. However, our results also suggest that queens of Azteca sp. have maximal distances that are four-sixteen times greater than those of its competitors. We found large differences between ant species in both the modal and maximal distance ant queens disperse to find vacant seedlings used to found new colonies. These differences could result from interspecific differences in queen body size, and hence wing musculature, or because queens differ in their ability to identify potential host plants while in flight. Our results provide support for one of the necessary conditions underlying several of the hypothesized mechanisms promoting coexistence in tropical plant-ants. They also suggest that for some ant species limited dispersal capability could pose a significant barrier to the rescue of populations in isolated forest fragments. Finally, we demonstrate that inverse models parameterized with field data are an excellent means of quantifying the dispersal of ant queens

    A rare genomic duplication in 2p14 underlies autosomal dominant hearing loss DFNA58

    Get PDF
    Here we define a ~ 200Kb genomic duplication in 2p14 as the genetic signature that segregates with post-lingual progressive sensorineural autosomal dominant hearing loss in 20 affected individuals from the DFNA58 family, first reported in 2009. The duplication includes two entire genes, PLEK and CNRIP1, and the first exon of PPP3R1 (protein-coding), in addition to four uncharacterized long noncoding (lnc) RNA genes and part of a novel protein-coding gene. Quantitative analysis of mRNA expression in blood samples revealed selective overexpression of CNRIP1 and of two lncRNA genes (LOC107985892 and LOC102724389) in all affected members tested, but not in unaffected ones. Qualitative analysis of mRNA expression identified also fusion transcripts involving parts of PPP3R1, CNRIP1 and an intergenic region between PLEK and CNRIP1, in the blood of all carriers of the duplication, but were heterogeneous in nature. By in situ hybridization and immunofluorescence, we showed that Cnrip1, Plek and Ppp3r1 genes are all expressed in the adult mouse cochlea including the spiral ganglion neurons, suggesting changes in expression levels of these genes in the hearing organ could underlie the DFNA58 form of deafness. Our study highlights the value of studying rare genomic events leading to hearing loss such as copy number variations. Further studies will be required to determine which of these genes, either coding proteins or non-coding RNAs, is or are responsible for DFNA58 hearing loss

    Amazonian trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordThe fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height (DBH) at the world's only long‐running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought‐stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought‐induced mortality following long‐term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought‐induced mortality.Natural Environment Research Council (NERC)Brazilian Higher Education Coordination Agency (CAPES)Royal SocietyEuropean Union FP7ARCFAPESP/Microsof

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Poly-Thymidine Oligonucleotides Mediate Activation of Murine Glial Cells Primarily Through TLR7, Not TLR8

    Get PDF
    The functional role of murine TLR8 in the inflammatory response of the central nervous system (CNS) remains unclear. Murine TLR8 does not appear to respond to human TLR7/8 agonists, due to a five amino acid deletion in the ectodomain. However, recent studies have suggested that murine TLR8 may be stimulated by alternate ligands, which include vaccinia virus DNA, phosphothioate oligodeoxynucleotides (ODNs) or the combination of phosphothioate poly-thymidine oligonucleotides (pT-ODNs) with TLR7/8 agonists. In the current study, we analyzed the ability of pT-ODNs to induce activation of murine glial cells in the presence or absence of TLR7/8 agonists. We found that TLR7/8 agonists induced the expression of glial cell activation markers and induced the production of multiple proinflammatory cytokines and chemokines in mixed glial cultures. In contrast, pT-ODNs alone induced only low level expression of two cytokines, CCL2 and CXCL10. The combination of pT-ODNs along with TLR7/8 agonists induced a synergistic response with substantially higher levels of proinflammatory cytokines and chemokines compared to CL075. This enhancement was not due to cellular uptake of the agonist, indicating that the pT-ODN enhancement of cytokine responses was due to effects on an intracellular process. Interestingly, this response was also not due to synergistic stimulation of both TLR7 and TLR8, as the loss of TLR7 abolished the activation of glial cells and cytokine production. Thus, pT-ODNs act in synergy with TLR7/8 agonists to induce strong TLR7-dependent cytokine production in glial cells, suggesting that the combination of pT-ODNs with TLR7 agonists may be a useful mechanism to induce pronounced glial activation in the CNS

    Intracameral bevacizumab and mitomycin C Trabeculectomy for eyes with neovascular glaucoma: a case series

    Get PDF
    The purpose of this study was to describe the surgical outcomes and safety of intracameral bevacizumab during trabeculectomy in eyes with neovascular glaucoma. Pilot study included four eyes (four patients) with refractory neovascular glaucoma submitted to fornix-based trabeculectomy with adjunctive use of bevacizumab in the anterior chamber during the procedure. Patients were previously treated with panretinal photocoagulation as standard therapy. Variables evaluated were intraocular pressure, bleb appearance, iris neovascularization, intraoperative/postoperative complications, and visual outcomes. No intraoperative complication was observed. The mean follow-up period was 12.75 (range, 12–15 months). All eyes showed significant intraocular pressure control postoperatively. Iris neovascularization reduced significantly within 1 month after surgery. Mild anterior chamber inflammation was observed during follow-up in all eyes. No significant postoperative complication was observed, and no patient presented visual acuity deterioration. Intracameral bevacizumab may be used as an adjunctive therapy during trabeculectomy in eyes with neovascular glaucoma
    corecore