24 research outputs found

    Détection de situations critiques et commande robuste tolérante aux défauts pour l'automobile

    Get PDF
    Les véhicules modernes sont de plus en plus équipés de nouveaux organes visant à améliorer la sécurité des occupants. Ces nouveaux systèmes sont souvent des organes actifs utilisant des données de capteurs sur le véhicule. Cependant, en cas de mauvais fonctionnement d'un capteur, les conséquences pour le véhicule peuvent être dramatiques. Afin de garantir la sécurité dans le véhicule, des nouvelles méthodologies de détections de défauts adaptées pour les véhicules sont proposées. Les méthodologies présentées sont étendues de la méthode de l'espace de parité pour les systèmes à paramètres variant (LPV). En outre, la transformation du problème de détection de défauts pour la détection de situations critiques est également proposée. Des résultats applicatifs réalisés sur un véhicule réel dans le cadre du projet INOVE illustrent les performances des détections de défauts et la détection de perte de stabilité du véhicule.Modern vehicles are increasingly equipped with new mechanisms to improve occupant safety. These new systems are often active parts using data from sensors on the vehicle. However, in case of malfunction of a sensor, the consequences for the vehicle can be dramatic. To ensure safety in the vehicle, new methodologies for detection of faults suitable for vehicles are proposed. The developed methodologies are extended from the method of parity space for linear parameter varying systems (LPV). In addition, the transformation of fault detection problem for the detection of critical situations is also available. Application of results achieved on a real vehicle within the INOVE project illustrate the performance of fault detection and detection of loss of stability of the vehicle.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Robust fault detection for Uncertain Unknown Inputs LPV system

    No full text
    International audienceThis paper focuses on robust fault residual generation for Uncertain Unknown Inputs Linear Parameter Varying (U-LPV) systems. Firstly, the problem is addressed in standard LPV systems based on the adaptation of the parity-space approach. The main objective of this approach is to design a scheduled parity matrix according to the scheduling parameters. It results a perfectly decoupled parity matrix face to the system states. Then, the major contribution of this paper relies on the extension to U-LPV systems. Since most of models which represent practical/real systems are subject to parameters variation, unmodeled dynamics and unknown inputs, the approach is clearly justified. The residual synthesis is rewritten in terms of a new optimization problem and solved using Linear Matrix Inequalities (LMIs) techniques. An applicative illustration is proposed and rests on a vehicle lateral dynamic system

    Robust suspension fault detection

    Get PDF

    Fault Tolerant Strategy for Semi-Active Suspensions with LPV Accommodation

    No full text
    International audienceAbstract--A novel fault tolerant strategy to compensate multiplicative actuator faults (damper oil leakages) in a semiactive suspension system is proposed. The compensation of the lack of damping force caused by a faulty damper is carried on by the remainder three healthy semi-active dampers. Once a faulty damper is detected and isolated by a Fault Detection and Isolation strategy based on parity-space, an estimator is activated to compute the missing damping force to compensate. In order to fulfill the semi-active damper constraints, the fault accommodation is based on the Linear-Parameter Varying (LPV) control strategy. Thus, each corner has a fault estimator and an LPV controller oriented to comfort and road holding. Simulation results show that the proposed fault tolerant semiactive suspension improves the vehicle comfort up to 60% with respect to a controlled suspension without fault-tolerant strategy and 82% with respect to a passive suspension

    FeedNetBack-D04.03 - Design of Robust Variable Rate Controllers

    Get PDF
    A consequence of the execution of control algorithms on digital distributed platforms is inducing delays, jitter and various limitations in sampling rate from different sources in the control loops. These disturbances should be taken into account in the control algorithms design and tuning. Control systems are often cited as examples of "hard real-time systems" where jitter and deadline violations are strictly forbidden. In fact experiments show that this assumption may be false for closed-loop control. Any practical feedback system is designed to obtain some stability margin and robustness w.r.t. the plant parameters uncertainty. This also provides robustness w.r.t. timing uncertainties: closed-loop systems are able to tolerate some amount of sampling period and computing delays deviations, jitter and occasional data loss without loss of stability or integrity. Hence the design of dependable distributed control systems may rely on robust controllers, i.e. controllers which are slightly sensitive to both process model and execution resource uncertainties, or on controllers which are made adaptive w.r.t. the variations of the control intervals and other implementation induced disturbances. Section 2 provides new results concerning the control of systems with delays. A novel analysis of linear systems under asynchronous sampling is provided. This approach is based on the discrete-time Lyapunov Theorem applied to the continuous-time model of the sampled-data systems. Tractable conditions are derived to ensure asymptotic stability and also to obtain an estimate of the exponential rate of the solutions. Examples show the efficiency of the method and the reduction of the conservatism compared to other results from the literature. Moreover the methodology addresses the stability analysis of systems under several sampling periods. We show that a sampled-data system can be stable even if one of the sampling period leads to instability. This has been treated by a continuous-time approach and allows considering uncertain or time-varying systems. An extension of the method includes transmission delays in the control loop. As the variations of the control intervals can be both a consequence of network induced delays and a control variable to manage the CPU and/or network load, robust variable sampling control design is investigated in section 3. Here it is assumed that the control interval is itself a control parameter, e.g. which can be adapted at run-time by a feedback scheduler to cope with operating conditions in a varying environment. The control design is stated using the formulation of Linear Parameters Varying (LPV) systems, where the sampling interval is considered as a varying and measurable parameters of the system. Previous results using a polytopic model of a discretized plant are recalled. A new design using a Linear Fractional Transform (LFT) is developed, where the control interval is considered as a system's uncertainty. This new approach is expected to be more tractable that the polytopic one when the system has several varying parameters. Both designs are assessed and compared using as testbed the control of Autonomous Underwater Vehicles using scheduled ultrasonic sensors for control and navigation.

    Fault Tolerant Control with Additive Compensation for Faults in an Automotive Damper

    No full text
    International audienceAbstract--A novel Fault-Tolerant Controller is proposed for an automotive suspension system based on a Quarter of Vehicle (QoV) model. The design is divided in a robust Linear Parameter-Varying controller used to isolate vibrations from external disturbances and in a compensation mechanism used to accommodate actuator faults. The compensation mechanism is based on a robust fault detection and estimation scheme that reconstructs a fault on the semi-active damper; this information is used to reduce the failure effect into the vertical dynamics to achieve good control performances. Validations have been made over a QoV model in CarSimTM. Results show the effectiveness of the faulttolerant semi-active damper versus an uncontrolled damper; the improvement is 50.4% in comfort and 42.4% in road holding, by avoiding biases in the damper deflection

    Détection de situations critiques et commande robuste tolérante aux défauts pour l'automobile

    No full text
    Modern vehicles are increasingly equipped with new mechanisms to improve occupant safety. These new systems are often active parts using data from sensors on the vehicle. However, in case of malfunction of a sensor, the consequences for the vehicle can be dramatic. To ensure safety in the vehicle, new methodologies for detection of faults suitable for vehicles are proposed. The developed methodologies are extended from the method of parity space for linear parameter varying systems (LPV). In addition, the transformation of fault detection problem for the detection of critical situations is also available. Application of results achieved on a real vehicle within the INOVE project illustrate the performance of fault detection and detection of loss of stability of the vehicle.Les véhicules modernes sont de plus en plus équipés de nouveaux organes visant à améliorer la sécurité des occupants. Ces nouveaux systèmes sont souvent des organes actifs utilisant des données de capteurs sur le véhicule. Cependant, en cas de mauvais fonctionnement d'un capteur, les conséquences pour le véhicule peuvent être dramatiques. Afin de garantir la sécurité dans le véhicule, des nouvelles méthodologies de détections de défauts adaptées pour les véhicules sont proposées. Les méthodologies présentées sont étendues de la méthode de l'espace de parité pour les systèmes à paramètres variant (LPV). En outre, la transformation du problème de détection de défauts pour la détection de situations critiques est également proposée. Des résultats applicatifs réalisés sur un véhicule réel dans le cadre du projet INOVE illustrent les performances des détections de défauts et la détection de perte de stabilité du véhicule

    Detection of critical situations and robust automotive fault tolerant control

    No full text
    Les véhicules modernes sont de plus en plus équipés de nouveaux organes visant à améliorer la sécurité des occupants. Ces nouveaux systèmes sont souvent des organes actifs utilisant des données de capteurs sur le véhicule. Cependant, en cas de mauvais fonctionnement d'un capteur, les conséquences pour le véhicule peuvent être dramatiques. Afin de garantir la sécurité dans le véhicule, des nouvelles méthodologies de détections de défauts adaptées pour les véhicules sont proposées. Les méthodologies présentées sont étendues de la méthode de l'espace de parité pour les systèmes à paramètres variant (LPV). En outre, la transformation du problème de détection de défauts pour la détection de situations critiques est également proposée. Des résultats applicatifs réalisés sur un véhicule réel dans le cadre du projet INOVE illustrent les performances des détections de défauts et la détection de perte de stabilité du véhicule.Modern vehicles are increasingly equipped with new mechanisms to improve occupant safety. These new systems are often active parts using data from sensors on the vehicle. However, in case of malfunction of a sensor, the consequences for the vehicle can be dramatic. To ensure safety in the vehicle, new methodologies for detection of faults suitable for vehicles are proposed. The developed methodologies are extended from the method of parity space for linear parameter varying systems (LPV). In addition, the transformation of fault detection problem for the detection of critical situations is also available. Application of results achieved on a real vehicle within the INOVE project illustrate the performance of fault detection and detection of loss of stability of the vehicle

    Filtering and fault estimation of descriptor switched systems

    No full text
    International audienceIn this paper, the problems of state and fault estimation are addressed for a class of switched descriptor systems subject to Lipschitz nonlinearities and unknown inputs (UI). The UI appear both on the dynamic and on the measurement equations. Two problems are addressed by L2-gain minimization with the use of switched Lyapunov functions and formulated by LMI. First, a functional observer for switched Lipschitz nonlinear descriptor system is proposed for robust state estimation. Second, fault estimation is performed by filtering the output estimation error, as usually done in the residual generation framework. Moreover, frequency weighting functions can be used to shape the response to the fault and thus improve the estimation
    corecore