8,320 research outputs found
Epigenetic Alteration of the Cancer-Related Gene TGFBI in B Cells Infected with EpsteinâBarr Virus and Exposed to Aflatoxin B1: Potential Role in Burkitt Lymphoma Development
Burkitt lymphoma (BL) is a malignant B cell neoplasm that accounts for almost half of pediatric cancers in sub-Saharan African countries. Although the BL endemic prevalence is attributable to the combination of EpsteinâBarr virus (EBV) infection with malaria and environmental carcinogens exposure, such as the food contaminant aflatoxin B1 (AFB1), the molecular determinants underlying the pathogenesis are not fully understood. Consistent with the role of epigenetic mechanisms at the interface between the genome and environment, AFB1 and EBV impact the methylome of respectively leukocytes and B cells specifically. Here, we conducted a thorough investigation of common epigenomic changes following EBV or AFB1 exposure in B cells. Genome-wide DNA methylation profiling identified an EBVâAFB1 common signature within the TGFBI locus, which encodes for a putative tumor suppressor often altered in cancer. Subsequent mechanistic analyses confirmed a DNA-methylation-dependent transcriptional silencing of TGFBI involving the recruitment of DNMT1 methyltransferase that is associated with an activation of the NF-ÎșB pathway. Our results reveal a potential common mechanism of B cell transformation shared by the main risk factors of endemic BL (EBV and AFB1), suggesting a key determinant of disease that could allow the development of more efficient targeted therapeutic strategies
Hydroxyapatite based hybrid dental materials with controlled porosity and improved tribological and mechanical properties
Hybrid dental materials were designed with controlled porosity and improved tribological and mechanical properties. These materials are based on hydroxyapatite (HAp) and reinforced with two different types of ceramic particles, alumina and silica, to support the high stresses and the continuous scratching produced during mastication. The agglutinant phase is an alkyd polyester polyurethane with high abrasion resistance that adheres well to surfaces containing OH groups. Porosity of the materials was controlled using sodium acetate powder of specified particle size as a pore former, thereby providing the materials with a morphology that resembles real teeth. The composition, structure and morphology were evaluated through several analytical techniques; results of scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction, induced coupled plasma optical emission spectroscopy and densitometry are reported. The ceramic powders incorporated (HAp, alumina and silica) were a combination of micro-and nanoscale particles; this use of different sized particles improved the packing and consequently the mechanical and tribological properties of the dental materials. Tribological features are explained from results of microscratch testing and abrasion resistance. The elastic modulus from mechanical testing is compared for the entire set of hybrid dental composites developed
Local helioseismology of sunspot regions: comparison of ring-diagram and time-distance results
Local helioseismology provides unique information about the subsurface
structure and dynamics of sunspots and active regions. However, because of
complexity of sunspot regions local helioseismology diagnostics require careful
analysis of systematic uncertainties and physical interpretation of the
inversion results. We present new results of comparison of the ring-diagram
analysis and time-distance helioseismology for active region NOAA 9787, for
which a previous comparison showed significant differences in the subsurface
sound-speed structure, and discuss systematic uncertainties of the measurements
and inversions. Our results show that both the ring-diagram and time-distance
techniques give qualitatively similar results, revealing a characteristic
two-layer seismic sound-speed structure consistent with the results for other
active regions. However, a quantitative comparison of the inversion results is
not straightforward. It must take into account differences in the sensitivity,
spatial resolution and the averaging kernels. In particular, because of the
acoustic power suppression, the contribution of the sunspot seismic structure
to the ring-diagram signal can be substantially reduced. We show that taking
into account this effect reduces the difference in the depth of transition
between the negative and positive sound-speed variations inferred by these
methods. Further detailed analysis of the sensitivity, resolution and averaging
properties of the local helioseismology methods is necessary for consolidation
of the inversion results. It seems to be important that both methods indicate
that the seismic structure of sunspots is rather deep and extends to at least
20 Mm below the surface, putting constraints on theoretical models of sunspots.Comment: 10 pages, 10 figures, submitted to Journal of Physics: Conference
Series (JPCS) GONG 2010 - SoHO 24 "A new era of seismology of the Sun and
solar-like stars", June 27 - July 2, 2010 Aix-en-Provence, Franc
The 2HWC HAWC Observatory Gamma Ray Catalog
We present the first catalog of TeV gamma-ray sources realized with the
recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the
most sensitive wide field-of-view TeV telescope currently in operation, with a
1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an
instantaneous field of view >1.5 sr and >90% duty cycle, it continuously
surveys and monitors the sky for gamma ray energies between hundreds GeV and
tens of TeV.
HAWC is located in Mexico at a latitude of 19 degree North and was completed
in March 2015. Here, we present the 2HWC catalog, which is the result of the
first source search realized with the complete HAWC detector. Realized with 507
days of data and represents the most sensitive TeV survey to date for such a
large fraction of the sky. A total of 39 sources were detected, with an
expected contamination of 0.5 due to background fluctuation. Out of these
sources, 16 are more than one degree away from any previously reported TeV
source. The source list, including the position measurement, spectrum
measurement, and uncertainties, is reported. Seven of the detected sources may
be associated with pulsar wind nebulae, two with supernova remnants, two with
blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory
The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an
extensive air shower detector operating in central Mexico, which has recently
completed its first two years of full operations. If for a burst like GRB
130427A at a redshift of 0.34 and a high-energy component following a power law
with index -1.66, the high-energy component is extended to higher energies with
no cut-off other than from extragalactic background light attenuation, HAWC
would observe gamma rays with a peak energy of 300 GeV. This paper
reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected
by and , including three GRBs that were also
detected by the Large Area Telescope (-LAT). An ON/OFF analysis
method is employed, searching on the time scale given by the observed light
curve at keV-MeV energies and also on extended time scales. For all GRBs and
time scales, no statistically significant excess of counts is found and upper
limits on the number of gamma rays and the gamma-ray flux are calculated. GRB
170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor
on board the satellite (-GBM) and also
detected by the LAT, occurred very close to zenith. The LAT measurements can
neither exclude the presence of a synchrotron self-Compton (SSC) component nor
constrain its spectrum. Instead, the HAWC upper limits constrain the expected
cut-off in an additional high-energy component to be less than
for reasonable assumptions about the energetics and redshift of the burst.Comment: 19 pages, 6 figures, published in Ap
Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC
We present results from daily monitoring of gamma rays in the energy range
to TeV with the first 17 months of data from the High
Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2
steradians and duty cycle of % are unique features compared to other TeV
observatories that allow us to observe every source that transits over HAWC for
up to hours each sidereal day. This regular sampling yields
unprecedented light curves from unbiased measurements that are independent of
seasons or weather conditions. For the Crab Nebula as a reference source we
find no variability in the TeV band. Our main focus is the study of the TeV
blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a
power law index and
an exponential cut-off
TeV. For Mrk 501, we find an index and exponential cut-off TeV. The light curves for both sources show clear
variability and a Bayesian analysis is applied to identify changes between flux
states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab
Nebula flux by a factor of approximately five. For Mrk 501, several transits
show fluxes in excess of three times the Crab Nebula flux. In a comparison to
lower energy gamma-ray and X-ray monitoring data with comparable sampling we
cannot identify clear counterparts for the most significant flaring features
observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory
The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been
used for the past 25 years as a reference source in TeV astronomy, for
calibration and verification of new TeV instruments. The High Altitude Water
Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe
the Crab Nebula at high significance across nearly the full spectrum of
energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view,
nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's
sensitivity improves with the gamma-ray energy. Above 1 TeV the
sensitivity is driven by the best background rejection and angular resolution
ever achieved for a wide-field ground array.
We present a time-integrated analysis of the Crab using 507 live days of HAWC
data from 2014 November to 2016 June. The spectrum of the Crab is fit to a
function of the form . The data is well-fit with values of
, , and
log when
is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the
systematic errors in this HAWC measurement is discussed and estimated to be
50\% in the photon flux between 1 and 37 TeV.
Confirmation of the Crab flux serves to establish the HAWC instrument's
sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of
current-generation observatories and open a new view of 2/3 of the sky above 10
TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa
- âŠ