8,478 research outputs found
Positronic complexes with unnatural parity
The structure of the unnatural parity states of PsH, LiPs, NaPs and KPs are
investigated with the configuration interaction and stochastic variational
methods. The binding energies (in hartree) are found to be 8.17x10-4,
4.42x10-4, 15.14x10-4 and 21.80x10-4 respectively. These states are constructed
by first coupling the two electrons into a configuration which is predominantly
3Pe, and then adding a p-wave positron. All the active particles are in states
in which the relative angular momentum between any pair of particles is at
least L = 1. The LiPs state is Borromean since there are no 3-body bound
subsystems (of the correct symmetry) of the (Li+, e-, e-, e+) particles that
make up the system. The dominant decay mode of these states will be radiative
decay into a configuration that autoionizes or undergoes positron annihilation.Comment: 10 pages RevTeX, 6 figures, in press Phys.Rev.
Stability of Few-Charge Systems in Quantum Mechanics
We consider non-relativistic systems in quantum mechanics interacting through
the Coulomb potential, and discuss the existence of bound states which are
stable against spontaneous dissociation into smaller atoms or ions. We review
the studies that have been made of specific mass configurations and also the
properties of the domain of stability in the space of masses or inverse masses.
These rigorous results are supplemented by numerical investigations using
accurate variational methods. A section is devoted to systems of three
arbitrary charges and another to molecules in a world with two
space-dimensions.Comment: 101 pages, review articl
On Renyi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems
We discuss some properties of the generalized entropies, called Renyi
entropies and their application to the case of continuous distributions. In
particular it is shown that these measures of complexity can be divergent,
however, their differences are free from these divergences thus enabling them
to be good candidates for the description of the extension and the shape of
continuous distributions. We apply this formalism to the projection of wave
functions onto the coherent state basis, i.e. to the Husimi representation. We
also show how the localization properties of the Husimi distribution on average
can be reconstructed from its marginal distributions that are calculated in
position and momentum space in the case when the phase space has no structure,
i.e. no classical limit can be defined. Numerical simulations on a one
dimensional disordered system corroborate our expectations.Comment: 8 pages with 2 embedded eps figures, RevTex4, AmsMath included,
submitted to PR
Optimized generation of spatial qudits by using a pure phase spatial light modulator
We present a method for preparing arbitrary pure states of spatial qudits,
namely, D-dimensional (D > 2) quantum systems carrying information in the
transverse momentum and position of single photons. For this purpose, a set of
D slits with complex transmission are displayed on a spatial light modulator
(SLM). In a recent work we have shown a method that requires a single
phase-only SLM to control independently the complex coefficients which define
the quantum state of dimension D. The amplitude information was codified by
introducing phase gratings inside each slit and the phase value of the complex
transmission was added to the phase gratings. After a spatial filtering process
we obtained in the image plane the desired qudit state. Although this method
has proven to be a good alternative to compact the previously reported
architectures, it presents some features that could be improved. In this paper
we present an alternative scheme to codify the required phase values that
minimizes the effects of temporal phase fluctuations associated to the SLM
where the codification is carried on. In this scheme the amplitudes are set by
appropriate phase gratings addressed at the SLM while the relative phases are
obtained by a lateral displacement of these phase gratings. We show that this
method improves the quality of the prepared state and provides very high
fidelities of preparation for any state. An additional advantage of this scheme
is that a complete 2\pi modulation is obtained by shifting the grating by one
period, and hence the encoding is not limited by the phase modulation range
achieved by the SLM. Numerical simulations, that take into account the phase
fluctuations, show high fidelities for thousands of qubit states covering the
whole Bloch sphere surface. Similar analysis are performed for qudits with D =
3 and D = 7.Comment: 12 pages, 7 figure
Comment on ``Critical Behavior in Disordered Quantum Systems Modified by Broken Time--Reversal Symmetry''
In a recent Letter [Phys. Rev. Lett. 80, 1003 (1998)] Hussein and Pato
employed the maximum entropy principle (MEP) in order to derive interpolating
ensembles between any pair of universality classes in random matrix theory.
They apply their formalism also to the transition from random matrix to Poisson
statistics of spectra that is observed for the case of the Anderson-type
metal-insulator transition. We point out the problems with the latter
procedure.Comment: 1 page in PS, to appear in PRL Sept. 2
GPS ACTIVITY AT THE DEPARTMENT OF GEODESY IN TECHNICAL UNIVERSITY BUDAPEST
GPS activity in Department of Geodesy has been done since 1987. For lack of receiver(s) we have joined to other Institutes and Companies in our works. Our activity is directed to three main lines: to take part in observation in different campaigns in Hungary; establishing and monitoring our test-net'work in Sóskút in geodynamica! point of view; investigation about the determination of geoid height with GPS techniques. Significant results of our
observations in the tectonic area would be expected after 6-8 years because of the nature
of the phenomenon
Second bound state of the positronium molecule and biexcitons
A new, hitherto unknown bound state of the positronium molecule, with orbital
angular momentum L=1 and negative parity is reported. This state is stable
against autodissociation even if the masses of the positive and negative
charges are not equal. The existence of a similar state in two-dimension has
also been investigated. The fact that the biexcitons have a second bound state
may help the better understanding of their binding mechanism.Comment: Latex, 8 pages, 2 Postscript figure
Conditional purity and quantum correlation measures in two qubit mixed states
We analyze and show experimental results of the conditional purity, the
quantum discord and other related measures of quantum correlation in mixed
two-qubit states constructed from a pair of photons in identical polarization
states. The considered states are relevant for the description of spin pair
states in interacting spin chains in a transverse magnetic field. We derive
clean analytical expressions for the conditional local purity and other
correlation measures obtained as a result of a remote local projective
measurement, which are fully verified by the experimental results. A simple
exact expression for the quantum discord of these states in terms of the
maximum conditional purity is also derived.Comment: 16 pages, 5 figures, minor changes, to be published in J. Phys.
- …