8 research outputs found

    Communication: Transient Anion States Of Phenol...(h2o) N (n = 1, 2) Complexes: Search For Microsolvation Signatures

    Get PDF
    We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species. © 2014 AIP Publishing LLC.1415NSF; National Stroke FoundationSanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , For a review, see, 10.1140/epjd/e2005-00206-6Wang, C.-R., Nguyen, J., Lu, Q.-B., (2009) J. Am. Chem. Soc., 131, p. 11320. , 10.1021/ja902675gBaccarelli, I., Bald, I., Gianturco, F.A., Illenberger, E., Kopyra, J., (2011) Phys. Rep., 508, p. 1. , 10.1016/j.physre2011.06.004Bettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126, p. 194317. , 10.1063/1.2739514De Oliveira, E.M., Lima, M.A.P., Bettega, M.H.F., Sanchez, S.D.A., Da Costa, R.F., Varella, M.T.D.N., (2010) J. Chem. Phys., 132, p. 204301. , 10.1063/1.3428620Baccarelli, I., Grandi, A., Gianturco, F.A., Lucchese, R.R., Sanna, N., (2006) J. Phys. Chem. B, 110, p. 26240. , 10.1021/jp065872nFabrikant, I.I., Caprasecca, S., Gallup, G.A., Gorfinkiel, J.D., (2012) J. Chem. Phys., 136, p. 184301. , 10.1063/1.4706604Freitas, T.C., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2009) Phys. Rev. A, 80, p. 062710. , 10.1103/PhysRevA.80.062710Freitas, T.C., Coutinho, K., Varella, M.T.D.N., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2013) J. Chem. Phys., 138, p. 174307. , 10.1063/1.4803119De Oliveira, E.M., Sanchez, S.D.A., Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Do Varella N, M.T., (2012) Phys. Rev. A, 86, pp. 020701-R. , 10.1103/PhysRevA.86.020701Jordan, K.D., Michejda, J.A., Burrow, P.D., (1976) J. Am. Chem. Soc., 98, p. 7189. , 10.1021/ja00439a014Khatymov, R.V., Muftakhov, M.V., Mazunov, V.A., (2003) Rapid Commun. Mass Spectrom., 17, p. 2327. , 10.1002/rcm.1197Dos Santos, J.S., Da Costa, R.F., Varella, M.T.D.N., (2012) J. Chem. Phys., 136, p. 084307. , 10.1063/1.3687345Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , 10.1103/PhysRevA.47.1111Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, pp. L129. , 10.1088/0953-4075/37/6/L03Takatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , 10.1103/PhysRevA.24.2473Takatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , 10.1103/PhysRevA.30.1734Barreto, R.C., Coutinho, K., Georg, H.C., Canuto, S., (2009) Phys. Chem. Chem. Phys., 11, p. 1388. , 10.1039/b816912h(1998) CRC Handbook of Chemistry and Physics, , 79th ed., edited by D. R. Lide (CRC, Boca Raton)http://dx.doi.org/10.1063/1.4892066Nenner, I., Schulz, G.J., (1975) J. Chem. Phys., 62, p. 1747. , 10.1063/1.430700Winstead, C., McKoy, V., (2007) Phys. Rev. Lett., 98, p. 113201. , 10.1103/PhysRevLett.98.113201Winstead, C., McKoy, V., (2007) Phys. Rev. A, 76, p. 012712. , 10.1103/PhysRevA.76.012712Mažín, Z., Gorfinkiel, J.D., (2011) J. Chem. Phys., 135, p. 144308. , 10.1063/1.3650236Modelli, A., Burrow, P.W., (2004) J. Phys. Chem. A, 108, p. 5721. , 10.1021/jp048759aSchmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , 10.1002/jcc.540141112Kossoski, F., Bettega, M.H.F., Varella, M.T.D.N., (2014) J. Chem. Phys., 140, p. 024317. , 10.1063/1.4861589Gallup, G., Burrow, P., Fabrikant, I., (2009) Phys. Rev. A, 79, p. 042701. , 10.1103/PhysRevA.79.042701Gallup, G., Burrow, P., Fabrikant, I., (2009) Phys. Rev. A, 80, p. 046702. , 10.1103/PhysRevA.80.046702Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , 10.1063/1.2727460Asmis, K.R., Allan, M., Pyrrole Data in the Gallery of Unpublished EEL Spectra, , http://www.chem.unifr.ch/ma/dir_allan/pyrrole_EELS.pdfHaxton, D.J., McCurdy, C.W., Rescigno, T.N., (2007) Phys. Rev. A, 75, p. 012710. , 10.1103/PhysRevA.75.012710Bode, B.M., Gordon, M.S., (1998) J. Mol. Graphics Modell., 16, p. 133. , 10.1016/S1093-3263(99)00002-9Fuke, K., Kaya, K., (1983) Chem. Phys. Lett., 94, p. 97. , 10.1016/0009-2614(83)87218-

    Electron Collisions With The Hcooh(h2o)n Complexes (n = 1, 2) In Liquid Phase: The Influence Of Microsolvation On The π Resonance Of Formic Acid

    Get PDF
    We report momentum transfer cross sections for elastic collisions of low-energy electrons with the HCOOH(H2O)n complexes, with n 1, 2, in liquid phase. The scattering cross sections were computed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for energies ranging from 0.5 eV to 6 eV. We considered ten different structures of HCOOHH2O and six structures of HCOOH(H2O)2 which were generated using classical Monte Carlo simulations of formic acid in aqueous solution at normal conditions of temperature and pressure. The aim of this work is to investigate the influence of microsolvation on the π shape resonance of formic acid. Previous theoretical and experimental studies reported a π shape resonance for HCOOH at around 1.9 eV. This resonance can be either more stable or less stable in comparison to the isolated molecule depending on the complex structure and the water role played in the hydrogen bond interaction. This behavior is explained in terms of (i) the polarization of the formic acid molecule due to the water molecules and (ii) the net charge of the solute. The proton donor or acceptor character of the water molecules in the hydrogen bond is important for understanding the stabilization versus destabilization of the π resonances in the complexes. Our results indicate that the surrounding water molecules may affect the lifetime of the π resonance and hence the processes driven by this anion state, such as the dissociative electron attachment. © 2013 AIP Publishing LLC.13817Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , 10.1126/science.287.5458.1658Hanel, G., Gstir, B., Denifl, S., Scheier, P., Probst, M., Farizon, B., Farizon, M., Märk, T.D., (2003) Phys. Rev. Lett., 90, p. 188104. , See, for example,10.1103/PhysRevLett.90.188104Denifl, S., Ptasinska, S., Cingel, M., Matejcik, S., Scheier, P., Märk, T.D., (2003) Chem. Phys. Lett., 377, p. 74. , 10.1016/S0009-2614(03)01096-0Abdoul-Carime, H., Gohlke, S., Illenberger, E., (2004) Phys. Rev. Lett., 92, p. 168103. , 10.1103/PhysRevLett.92.168103Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 074302. , See, for instance,10.1063/1.2263824Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 244302. , 10.1063/1.2424456Winstead, C., McKoy, V., Sanchez, S.D.A., (2007) J. Chem. Phys., 127, p. 085105. , 10.1063/1.2757617Gorfinkel, J.D., Caron, L.G., Sanche, L., (2006) J. Phys. B: At. Mol. Opt. Phys., 39, p. 975. , 10.1088/0953-4075/39/4/021De Oliveira, E.M., Lima, M.A.P., Bettega, M.H.F., Sanchez, S.D.A., Da Costa, R.F., Varella, M.T.D.N., (2010) J. Chem. Phys., 132, p. 204301. , references therein. 10.1063/1.3428620Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., Sanche, L., (2004) Phys. Rev. Lett., 93, p. 068101. , 10.1103/PhysRevLett.93.068101Scheer, A.M., Aflatooni, K., Gallup, G.A., Burrow, P.D., (2004) Phys. Rev. Lett., 92, p. 068102. , 10.1103/PhysRevLett.92.068102Sanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , 10.1140/epjd/e2005-00206-6Gianturco, F.A., Luchese, R.R., Langer, J., Martin, I., Stano, M., Karwasz, G., Illenberg, E., (2005) Eur. Phys. J. D, 35, p. 417. , 10.1140/epjd/e2005-00233-3Freitas, T.C., Sanchez, S.A., Varella, M.T.D.N., Bettega, M.H.F., (2011) Phys. Rev. A, 84, p. 062714. , 10.1103/PhysRevA.84.062714Caron, L., Bouchiha, D., Gorfinkiel, J.D., Sanche, L., (2007) Phys. Rev. A, 76, p. 032716. , 10.1103/PhysRevA.76.032716Caprasecca, S., Gorfinkel, J.D., Bouchiha, D., Caron, L., (2009) J. Phys. B, 42, p. 095205. , 10.1088/0953-4075/42/9/095205Baccarelli, I., Grandi, A., Gianturco, F.A., Lucchese, R.R., Sanna, N., (2006) J. Phys. Chem. B, 110, p. 26240. , 10.1021/jp065872nFreitas, T.C., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2009) Phys. Rev. A, 80, p. 062710. , 10.1103/PhysRevA.80.062710Fabrikant, I.I., Caprasecca, S., Gallup, G.A., Gorfinkel, J.D., (2012) J. Chem. Phys., 136, p. 184301. , 10.1063/1.4706604Gianturco, F.A., Lucchese, R.R., (2004) New J. Phys., 6, p. 66. , 10.1088/1367-2630/6/1/066Gianturco, F.A., Lucchese, R.R., (2006) Eur. Phys. J. D, 39, p. 399. , 10.1140/epjd/e2006-00112-5Rescigno, T.N., Trevisan, C.S., Orel, A.E., (2006) Phys. Rev. Lett., 96, p. 213201. , 10.1103/PhysRevLett.96.213201Trevisan, C.S., Orel, A.E., Rescigno, T.N., (2006) Phys. Rev. A, 74, p. 042716. , 10.1103/PhysRevA.74.042716Vizcaino, V., Jelisavcic, M., Sullivan, J.P., Buckman, S.J., (2006) New J. Phys., 8, p. 85. , 10.1088/1367-2630/8/6/085Allan, M., (2006) J. Phys. B, 39, p. 2939. , 10.1088/0953-4075/39/14/002Bettega, M.H.F., (2006) Phys. Rev. A, 74, p. 054701. , 10.1103/PhysRevA.74.054701Allan, M., (2007) Phys. Rev. Lett., 98, p. 123201. , 10.1103/PhysRevLett.98.123201Rescigno, T.N., Trevisan, C.S., Orel, A.E., (2009) Phys. Rev. A, 80, p. 046701. , 10.1103/PhysRevA.80.046701Gallup, G.A., Burrow, P.D., Fabrikant, I.I., (2009) Phys. Rev. A, 80, p. 046702. , 10.1103/PhysRevA.80.046702Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , 10.1063/1.2727460Coutinho, K., Canuto, S., (2000) J. Chem. Phys., 113, p. 9132. , 10.1063/1.1320827Bode, B.M., Gordon, M.S., (1998) J. Mol. Graphics Modell., 16, p. 133. , 10.1016/S1093-3263(99)00002-9Coutinho, K., Canuto, S., DICE, a Monte Carlo program for molecular liquid simulation, version 2.9, University of São Paulo, São Paulo, 2009Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., (1987) J. Phys. Chem., 91, p. 6269. , 10.1021/j100308a038Moller, C., Plesset, M.S., (1934) Phys. Rev., 46, p. 618. , 10.1103/PhysRev.46.618Leininger, M.L., Allen, W.D., Schaefer, H.F., Sherrill, C.D., (2000) J. Chem. Phys., 112, p. 9213. , 10.1063/1.481764Dunning, Jr.T.H., (1989) J. Chem. Phys., 90, p. 1007. , 10.1063/1.456153Frisch, M.J., Trucks, G.W., Schlegel, H.B., GAUSSIAN 03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2003Briggs, J.M., Nguyen, T.B., Jorgensen, W.L., (1991) J. Phys. Chem., 95, p. 3315. , 10.1021/j100161a065Breneman, C.M., Wiberg, K.B., (1990) J. Comput. Chem., 11, p. 361. , 10.1002/jcc.540110311Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R., Barone, V., (2006) J. Chem. Phys., 124, p. 094107. , 10.1063/1.2173258Manzoni, V., Lyra, M.L., Gester, R.M., Coutinho, K., Canuto, S., (2010) Phys. Chem. Chem. Phys., 12, p. 14023. , 10.1039/c0cp00122hDamasceno, M.V.A., Cabral, B.J.C., Coutinho, K., (2012) Theor. Chem. Acc., 131, p. 1214. , 10.1007/s00214-012-1214-yTakatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , 10.1103/PhysRevA.24.2473Takatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , 10.1103/PhysRevA.30.1734Lima, M.A.P., Brescansin, L.M., Da Silva, A.J.R., Winstead, C., McKoy, V., (1990) Phys. Rev. A, 41, p. 327. , 10.1103/PhysRevA.41.327Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , 10.1103/PhysRevA.47.1111Bachelet, G.B., Hamann, D.R., Schlüter, M., (1982) Phys. Rev. B, 26, p. 4199. , 10.1103/PhysRevB.26.4199Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60, p. 821. , 10.1002/(SICI)1097-461X(1996)60:43.0.CO;2-ZDunning, Jr.T.H., (1970) J. Chem. Phys., 53, p. 2823. , 10.1063/1.1674408Bauschlicher, C., (1980) J. Chem. Phys., 72, p. 880. , 10.1063/1.439243Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, p. 129. , 10.1088/0953-4075/37/6/L03Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2005) J. Phys. B, 38, p. 4363. , 10.1088/0953-4075/38/24/003Gray, C.G., Gubbins, K.E., (1984) Theory of Molecular Fluids. Volume 1: Fundamentals, , (Clarendon Press, Oxford)Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , 10.1002/jcc.540141112Staley, S.W., Strnad, J.T., (1994) J. Phys. Chem., 98, p. 116. , 10.1021/j100052a020Freitas, T.C., Varella, M.T.D.N., Da Costa, R.F., Lima, M.A.P., Bettega, M.H.F., (2009) Phys. Rev. A, 79, p. 022706. , 10.1103/PhysRevA.79.022706Rivelino, R., Cabral, B.J.C., Coutinho, K., Canuto, S., (2005) Chem. Phys. Lett., 407, p. 13. , 10.1016/j.cplett.2005.03.049Miertuš, S., Scrocco, E., Tomasi, J., (1981) Chem. Phys., 55, p. 117. , 10.1016/0301-0104(81)85090-2Cancès, E., Mennucci, B., Tomasi, J., (1997) J. Chem. Phys., 107, p. 3032. , 10.1063/1.474659Hehre, W.J., Radom, L., Schleyer V. P, R., Pope, J.A., (1986) Ab Initio Molecular Orbital Theory, , 1st ed. (John Wiley and Sons, New York)Jensen, F., (2007) Introduction to Computational Chemistry, , 2nd ed. (John Wiley and Sons, West Sussex

    Desafios da formação do enfermeiro no contexto da expansão do ensino superior Desafíos de la formación del enfermero dentro del contexto de expansión de la enseñanza superior Nursing education challenges in a context of growth in participation in higher education

    No full text
    O estudo teve como objetivo identificar desafios na formação do enfermeiro no contexto da expansão do ensino superior. Pesquisa realizada em 17 cursos de graduação em enfermagem no Estado de Minas Gerais, por meio de grupos focais com docentes e discentes. Os resultados indicam que há uma mudança no perfil dos alunos que têm ingressado nos cursos de enfermagem. No contexto da expansão, as escolas têm contribuído para a transformação dos modelos de atenção com a incorporação de uma nova concepção sobre o sistema de saúde. Contudo, há desafios para associar as mudanças requeridas na graduação com o novo perfil de alunos que "optam" pelos cursos de enfermagem. Indica-se a necessidade de as escolas reverem seu projeto pedagógico e sua organização curricular a favor da qualificação do cuidado e da transformação dos modelos de atenção em saúde.<br>El presente estudio tuvo por objeto identificar los desafíos de la formación del enfermero dentro del contexto de expansión de la enseñanza superior. Se trata de una investigación realizada en 17 cursos de graduación en Enfermería en el Estado de Minas Gerais, con grupos focales de docentes y alumnos. Los resultados indican que el perfil de los alumnos que ingresan en los cursos de enfermería ha cambiado. Dentro del contexto de expansión, las facultades han contribuido para transformar los modelos de atención al adoptar una nueva concepción sobre el sistema de salud. Sin embargo, deben enfrentarse desafíos para asociar los cambios requeridos en la graduación con el nuevo perfil de alumnos que optan por los cursos de Enfermería. Se señala la necesidad de que las escuelas revean su proyecto pedagógico y organización curricular a favor de la calificación del cuidado y transformación de los modelos de atención en salud.<br>This study aimed to identify aspects that challenge nursing education in a context of growth in participation in higher education. The research was conducted in 17 Bachelor of Nursing courses in the state of Minas Gerais with focus groups formed by professors and students. The results indicate changes in the profile of nursing students being admitted to the universities. In this context of growth nursing schools have contributed to the transformation of the models of care and to the incorporation of new concepts on health system. However there are problems to articulate the changes required in the nursing degree courses with the new profile of students that decide on a nursing course. It is necessary that the schools review their teaching project and the organization of the curriculum that should focus on care qualification and the transformation of the health care system

    Emissão de óxidos de nitrogênio associada à aplicação de uréia sob plantio convencional e direto Nitrogen oxides emission related to urea broadcasting fertilization under conventional and no-tillage systems

    No full text
    O objetivo deste trabalho foi avaliar emissões de NO e N2O até cinco dias após a primeira fertilização de cobertura com uréia em milho, em Latossolo Vermelho argiloso distrófico, sob plantio convencional e direto. A adubação de cobertura foi de 60 kg ha-1 de N. O experimento foi conduzido na Embrapa Cerrados, Planaltina, DF, com delineamento de blocos ao acaso, com três repetições, sendo o terceiro cultivo de milho, em rotação com soja. Os fluxos de NO e N2O foram medidos em câmaras de PVC instaladas em cada parcela. Houve emissão alta de NO imediatamente após (5,4 ng N cm-2 h-1) e no terceiro dia (4,8 ng N cm-2 h-1) após aplicação de uréia e irrigação. Um dia após fertilização, a emissão de NO reduziu-se a 1,9 ng N cm-2 h-1, e cinco dias depois, alcançou 1,2 ng N cm-2 h-1. Os fluxos de N2O ficaram abaixo do limite de detecção de 0,6 ng N cm-2 h-1. Não houve diferença significativa entre os plantios convencional e direto quanto à emissão dos óxidos de nitrogênio.<br>The objective of this work was to evaluate the NO and N2O emissions up to five days after the first nitrogen broadcasting fertilization with urea in a cornfield, in a Red Latosol, under conventional and no-tillage systems. The level of nitrogen broadcasting fertilization was of 60 kg ha-1. The experiment was conducted at Embrapa Cerrados, Planaltina, DF, Brazil, in a randomized block design, with three replications, beeing the third corn crop in rotation with soybean. NO and N2O fluxes were measured using PVC chambers installed in each plot. Higher NO fluxes were found immediately after (5.4 ng N cm-2 h-1) and three days (4.8 ng N cm-2 h-1) after N fertilization and irrigation. In the first day after fertilization, the NO emission decreased significantly to 1.9 ng N cm-2 h-1, and after five days, reached 1.2 ng N cm-2 h-1. N2O fluxes values were below the detection limit of 0.6 ng N cm-2 h-1. No significant differences in nitrogen oxides fluxes were found between plots under conventional and no-tillage systems
    corecore