12 research outputs found

    Observation of Mixed Alkali Like Behaviour by Fluorine Ion in Mixed Alkali Oxyfluro Vanadate Glasses: Analysis from Conductivity Measurements

    Full text link
    In this communication we report the fluorine ion dynamics in mixed alkali oxyfluro vanadate glasses. We have measured the electrical conductivity using impedance spectroscopy technique Room temperature conductivity falls to 5 orders of magnitude from its single alkali values at 33 mol% of rubidium concentration. We have also estimated the distance between similar mobile ions using the density values. Assuming this distance as the hopping distance between the similar ions we have estimated the anionic (Fluorine ion in our case) conductivity. It is observed that the fluorine ion dynamics mimics the mixed alkali effect and scales as the onset frequency f0.Comment: submitted to DAE-SSDP 2018 Indi

    Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles

    No full text
    We report here the investigations on the size dependent variation of magnetic properties of nickel ferrite nanoparticles. Nickel ferrite nanoparticles of different sizes (14 to 22 nm) were prepared by the sol-gel route at different annealing temperatures. They are characterized by TGA-DTA, XRD, SEM, TEM and Raman spectroscopy techniques for the confirmation of the temperature of phase formation, thermal stability, crystallinity, morphology and structural status of the nickel ferrite nanoparticles. The magnetization studies revealed that the saturation magnetization (M-s), retentivity (M-r) increase, while coercivity (H-c) and anisotropy (K-eff) decrease as the particle size increases. The observed value of M-s is found to be relatively higher for a particle size of 22 nm. In addition, we have estimated the magnetic domain size using magnetic data and correlated to the average particle size. The calculated magnetic domain size is closely matching with the particle size estimated from XRD. Impedance spectroscopy was employed to study the samples in an equivalent circuit to understand their transport phenomena. It shows that nickel ferrite nanoparticles exhibit a non-Debye behavior with increasing particle size due to the influence of increasing disorders, surface effects, grain size and grain boundaries, etc. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License

    Field dependent and disorder-induced nonlinear charge transport in electrochemically doped polypyrrole devices

    No full text
    Electric field activated charge transport is studied in the metal/polymer/metal device structure of electropolymerized polypyrrole down to 10 K with varying carrier density and disorder. Disorder induced nonlinear behaviour is observed in polypyrrole devices grown at room temperature which is correlated to delocalization of states. The slope parameter of currentvoltage characteristics (in log-log scale) increases as the temperature decreases, which indicates the onset of stronger field dependence. The field dependence of mobility becomes dominant as the carrier density decreases. The sharp dip in differential conductance indicates the localization of carriers at low temperatures which reduces the effective number of carriers involved in the transport

    Probing disorder and transport properties in polypyrrole thin-film devices by impedance and Raman spectroscopy

    No full text
    In the present study, impedance and Raman spectroscopy are adopted to probe the nature and extent of disorder to correlate with transport properties in doped polypyrrole (PPy) thin-film devices, synthesized electrochemically at different temperatures. A comparative study of the impedance spectroscopy is performed on PPy devices by both experimental and simulation approach with varying extent of disorder. The impedance measurements of PPy devices are well described by introducing a constant phase element (CPE) (Q) in modified RQ circuit, which accounts for frequency dependence of dielectric response. However, for the PPy grown at lower temperature, an equivalent circuit consisting of two such RQ elements in series is used for successful modelling of the impedance results, which accounts for the depletion region near the electrode. Raman spectroscopy and the de-convoluted spectra are successfully studied to probe the variation in C=C bond stretching and distribution of conjugation length, which relates to disorder in PPy films and the interpretation is well correlated to the impedance results

    Role of carrier density and disorder on anisotropic charge transport in polypyrrole

    No full text
    Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405

    Electric field activated nonlinear anisotropic charge transport in doped polypyrrole

    No full text
    Electric field activated nonlinear transport is investigated in polypyrrole thin film in both in-plane and out-of-plane geometries down to 5 K and strong anisotropy is observed. A morphological model is suggested to explain the anisotropy through inter-chain and intra-chain transport. The deviation from the variable range hopping at low temperature is accounted by fluctuation assisted transport. From Zabrodaskii plots, it is found that electric field can tune the transport from insulating to metallic regime. Glazman-Matveev model is used to describe the nonlinear conduction. Field scaling analysis shows that conductance data at different temperature falls on to a single curve. Nonlinearity exponent, m(T) and characteristic length, L-E are estimated to characterize the transport in both the geometries. (C) 2013 AIP Publishing LLC

    Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    No full text
    Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC

    Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots

    No full text
    This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current–voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices

    Interactions between photoexcited NIR emitting CdHgTe quantum dots and graphene oxide

    No full text
    Hydrothermally grown mercury cadmium telluride quantum dots (CdHgTe QDs) are decorated on graphene oxide (GO) sheets through physisorption. The structural change of GO through partial reduction of oxygen functional groups is observed with X-ray photoelectron spectroscopy in GO-QDs composites. Raman spectroscopy provides relatively a small change (similar to 1.1 times) in D/G ratio of band intensity and red shift in G band from 1606 cm(-1) to 1594 cm(-1) in GO-CdHgTe QDs (2.6 nm) composites, which indicates structural modification of GO network. Steady state and time resolved photoluminescence (PL) spectroscopy shows the electronic interactions between photoexcited near infrared emitting CdHgTe QDs and GO. Another interesting observation is PL quenching in the presence of GO, and it is quite effective in the case of smaller size QDs (2.6 nm) compared to the larger size QDs (4.2 nm). Thus, the observed PL quenching is attributed to the photogenerated electron transfer from QDs to GO. The photoexcited electron transfer rate decreases from 2.2 x 10(9) to 1.5 x 10(8) s(-1) with increasing particle size from 2.6 to 4.2 nm. Photoconductivity measurements on QDs-GO composite devices show nearly 3 fold increase in the current density under photo-illumination, which is a promising aspect for solar energy conversion and other optoelectronic applications. (C) 2016 AIP Publishing LLC
    corecore