10 research outputs found

    HIV-1 gp41 envelope IgA is frequently elicited after transmission but has an initial short response half-life.

    Get PDF
    Prevention of HIV-1 transmission at mucosal surfaces will likely require durable pre-existing mucosal anti-HIV-1 antibodies (Abs). Defining the ontogeny, specificities and potentially protective nature of the initial mucosal virus-specific B-cell response will be critical for understanding how to induce protective Ab responses by vaccination. Genital fluids from patients within the earliest stages of acute HIV-1 infection (Fiebig I-VI) were examined for multiple anti-HIV specificities. Gp41 (but not gp120) Env immunoglobulin (Ig)A Abs were frequently elicited in both plasma and mucosal fluids within the first weeks of transmission. However, shortly after induction, these initial mucosal gp41 Env IgA Abs rapidly declined with a t(½) of ∼2.7 days. B-cell-activating factor belonging to the TNF family (BAFF) was elevated immediately preceding the appearance of gp41 Abs, likely contributing to an initial T-independent Ab response. HIV-1 transmission frequently elicits mucosal HIV-1 envelope-specific IgA responses targeted to gp41 that have a short half-life

    Immune perturbations in HIV-1–infected individuals who make broadly neutralizing antibodies

    No full text
    Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. bnAbs occur in some HIV-1–infected individuals and frequently have characteristics of autoantibodies. We have studied cohorts of HIV-1–infected individuals who made bnAbs and compared them with those who did not do so, and determined immune traits associated with the ability to produce bnAbs. HIV-1–infected individuals with bnAbs had a higher frequency of blood autoantibodies, a lower frequency of regulatory CD4+ T cells, a higher frequency of circulating memory T follicular helper CD4+ cells, and a higher T regulatory cell level of programmed cell death–1 expression compared with HIV-1–infected individuals without bnAbs. Thus, induction of HIV-1 bnAbs may require vaccination regimens that transiently mimic immunologic perturbations in HIV-1–infected individuals

    Immune perturbations in HIV-1–infected individuals who make broadly neutralizing antibodies

    No full text
    Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. bnAbs occur in some HIV-1–infected individuals and frequently have characteristics of autoantibodies. We have studied cohorts of HIV-1–infected individuals who made bnAbs and compared them with those who did not do so, and determined immune traits associated with the ability to produce bnAbs. HIV-1–infected individuals with bnAbs had a higher frequency of blood autoantibodies, a lower frequency of regulatory CD4+ T cells, a higher frequency of circulating memory T follicular helper CD4+ cells, and a higher T regulatory cell level of programmed cell death–1 expression compared with HIV-1–infected individuals without bnAbs. Thus, induction of HIV-1 bnAbs may require vaccination regimens that transiently mimic immunologic perturbations in HIV-1–infected individuals

    Postnatally-transmitted HIV-1 Envelope variants have similar neutralization-sensitivity and function to that of nontransmitted breast milk variants.

    Get PDF
    BACKGROUND: Breastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n = 13 viruses), five clinically-matched nontransmitting mothers (n = 16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses). RESULTS: There was no difference in the efficiency of epithelial cell interactions between Env virus variants from the breast milk of transmitting and nontransmitting mothers. Moreover, there was similar efficiency of DC-mediated trans-infection, CCR5-usage, target cell fusion, and infectivity between HIV-1 Env-pseudoviruses from nontransmitting mothers and postnatal T/F viruses. Milk Env-pseudoviruses were generally sensitive to neutralization by autologous maternal plasma and resistant to breast milk neutralization. Infant T/F Env-pseudoviruses were equally sensitive to neutralization by broadly-neutralizing monoclonal and polyclonal antibodies as compared to nontransmitted breast milk Env variants. CONCLUSION: Postnatally-T/F Env variants do not appear to possess a superior ability to interact with and cross a mucosal barrier or an exceptional resistance to neutralization that define their capability to initiate infection across the infant gastrointestinal tract in the setting of preexisting maternal antibodies

    Polyclonal B cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection.

    No full text
    BACKGROUND: The antibody response to HIV-1 does not appear in the plasma until approximately 2-5 weeks after transmission, and neutralizing antibodies to autologous HIV-1 generally do not become detectable until 12 weeks or more after transmission. Moreover, levels of HIV-1-specific antibodies decline on antiretroviral treatment. The mechanisms of this delay in the appearance of anti-HIV-1 antibodies and of their subsequent rapid decline are not known. While the effect of HIV-1 on depletion of gut CD4(+) T cells in acute HIV-1 infection is well described, we studied blood and tissue B cells soon after infection to determine the effect of early HIV-1 on these cells. METHODS AND FINDINGS: In human participants, we analyzed B cells in blood as early as 17 days after HIV-1 infection, and in terminal ileum inductive and effector microenvironments beginning at 47 days after infection. We found that HIV-1 infection rapidly induced polyclonal activation and terminal differentiation of B cells in blood and in gut-associated lymphoid tissue (GALT) B cells. The specificities of antibodies produced by GALT memory B cells in acute HIV-1 infection (AHI) included not only HIV-1-specific antibodies, but also influenza-specific and autoreactive antibodies, indicating very early onset of HIV-1-induced polyclonal B cell activation. Follicular damage or germinal center loss in terminal ileum Peyer's patches was seen with 88% of follicles exhibiting B or T cell apoptosis and follicular lysis. CONCLUSIONS: Early induction of polyclonal B cell differentiation, coupled with follicular damage and germinal center loss soon after HIV-1 infection, may explain both the high rate of decline in HIV-1-induced antibody responses and the delay in plasma antibody responses to HIV-1. Please see later in the article for Editors' Summary

    Ambient ionization mass spectrometry applied to new psychoactive substance analysis

    No full text
    corecore