570 research outputs found
Demonstration of dynamic thermal compensation for parametric instability suppression in Advanced LIGO
Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an Advanced LIGO detector. Annular ring heaters that compensate central heating are used to tune the optical mode away from multiple problematic mirror resonance frequencies. We develop a single-cavity approximation model to simulate the optical beat note frequency during the central heating and ring heating transient. An experiment of dynamic ring heater tuning at the LIGO Livingston detector was carried out at 170 kW circulating power and, in agreement with our model, the third order optical beat note is controlled to avoid instability of the 15 and 15.5 kHz mechanical modes. We project that dynamic thermal compensation with ring heater input conditioning can be used in parallel with acoustic mode dampers to control the optical mode transient and avoid parametric instability of these modes up to Advanced LIGO\u27s design circulating power of 750 kW. The experiment also demonstrates the use of three mode interaction monitoring as a sensor of the cavity geometry, used to maintain theg-factor product tog(1)g(2)= 0.829 +/- 0.004
ER Stress Induces Anabolic Resistance in Muscle Cells through PKB-Induced Blockade of mTORC1
Anabolic resistance is the inability to increase protein synthesis in response to an increase in amino acids following a meal. One potential mediator of anabolic resistance is endoplasmic reticulum (ER) stress. The purpose of the present study was to test whether ER stress impairs the response to growth factors and leucine in muscle cells
Induction of Glucose Metabolism in Stimulated T Lymphocytes Is Regulated by Mitogen-Activated Protein Kinase Signaling
T lymphocytes play a critical role in cell-mediated immune responses. During activation, extracellular and intracellular signals alter T cell metabolism in order to meet the energetic and biosynthetic needs of a proliferating, active cell, but control of these phenomena is not well defined. Previous studies have demonstrated that signaling from the costimulatory receptor CD28 enhances glucose utilization via the phosphatidylinositol-3-kinase (PI3K) pathway. However, since CD28 ligation alone does not induce glucose metabolism in resting T cells, contributions from T cell receptor-initiated signaling pathways must also be important. We therefore investigated the role of mitogen-activated protein kinase (MAPK) signaling in the regulation of mouse T cell glucose metabolism. T cell stimulation strongly induces glucose uptake and glycolysis, both of which are severely impaired by inhibition of extracellular signal-regulated kinase (ERK), whereas p38 inhibition had a much smaller effect. Activation also induced hexokinase activity and expression in T cells, and both were similarly dependent on ERK signaling. Thus, the ERK signaling pathway cooperates with PI3K to induce glucose utilization in activated T cells, with hexokinase serving as a potential point for coordinated regulation
Point absorbers in Advanced LIGO
Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power build-up in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and hence, limit GW sensitivity, but suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises
Approaching the motional ground state of a 10 kg object
The motion of a mechanical object -- even a human-sized object -- should be
governed by the rules of quantum mechanics. Coaxing them into a quantum state
is, however, difficult: the thermal environment masks any quantum signature of
the object's motion. Indeed, the thermal environment also masks effects of
proposed modifications of quantum mechanics at large mass scales. We prepare
the center-of-mass motion of a 10 kg mechanical oscillator in a state with an
average phonon occupation of 10.8. The reduction in temperature, from room
temperature to 77 nK, is commensurate with an 11 orders-of-magnitude
suppression of quantum back-action by feedback -- and a 13 orders-of-magnitude
increase in the mass of an object prepared close to its motional ground state.
This begets the possibility of probing gravity on massive quantum systems.Comment: published version containing minor change
Environmental Noise in Advanced LIGO Detectors
The sensitivity of the Advanced LIGO detectors to gravitational waves can be
affected by environmental disturbances external to the detectors themselves.
Since the transition from the former initial LIGO phase, many improvements have
been made to the equipment and techniques used to investigate these
environmental effects. These methods have aided in tracking down and mitigating
noise sources throughout the first three observing runs of the advanced
detector era, keeping the ambient contribution of environmental noise below the
background noise levels of the detectors. In this paper we describe the methods
used and how they have led to the mitigation of noise sources, the role that
environmental monitoring has played in the validation of gravitational wave
events, and plans for future observing runs
Point absorbers in Advanced LIGO
Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises
Quantum correlations between the light and kilogram-mass mirrors of LIGO
Measurement of minuscule forces and displacements with ever greater precision
encounters a limit imposed by a pillar of quantum mechanics: the Heisenberg
uncertainty principle. A limit to the precision with which the position of an
object can be measured continuously is known as the standard quantum limit
(SQL). When light is used as the probe, the SQL arises from the balance between
the uncertainties of photon radiation pressure imposed on the object and of the
photon number in the photoelectric detection. The only possibility surpassing
the SQL is via correlations within the position/momentum uncertainty of the
object and the photon number/phase uncertainty of the light it reflects. Here,
we experimentally prove the theoretical prediction that this type of quantum
correlation is naturally produced in the Laser Interferometer
Gravitational-wave Observatory (LIGO). Our measurements show that the quantum
mechanical uncertainties in the phases of the 200 kW laser beams and in the
positions of the 40 kg mirrors of the Advanced LIGO detectors yield a joint
quantum uncertainty a factor of 1.4 (3dB) below the SQL. We anticipate that
quantum correlations will not only improve gravitational wave (GW)
observatories but all types of measurements in future
Sensitivity and performance of the Advanced LIGO detectors in the third observing run
On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), joined by the Advanced Virgo detector, began the third observing run, a year-long dedicated search for gravitational radiation. The LIGO detectors have achieved a higher duty cycle and greater sensitivity to gravitational waves than ever before, with LIGO Hanford achieving angle-averaged sensitivity to binary neutron star coalescences to a distance of 111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0% respectively. The improvement in sensitivity and stability is a result of several upgrades to the detectors, including doubled intracavity power, the addition of an in-vacuum optical parametric oscillator for squeezed-light injection, replacement of core optics and end reaction masses, and installation of acoustic mode dampers. This paper explores the purposes behind these upgrades, and explains to the best of our knowledge the noise currently limiting the sensitivity of each detector
- …