13 research outputs found

    N2O5 uptake coefficients and nocturnal NO2 removal rates determined from ambient wintertime measurements

    No full text
    Heterogeneous N2O5 uptake onto aerosol is the primary nocturnal path for removal of NOx (= NO+NO2) from the atmosphere and can also result in halogen activation through production of ClNO2. The N2O5 uptake coefficient has been the subject of numerous laboratory studies; however, only a few studies have determined the uptake coefficient from ambient measurements, and none has been focused on winter conditions, when the portion of NOx removed by N2O5 uptake is the largest. In this work, N 2O5 uptake coefficients are determined from ambient wintertime measurements of N2O5 and related species at the Boulder Atmospheric Observatory in Weld County, CO, a location that is highly impacted by urban pollution from Denver, as well as emissions from agricultural activities and oil and gas extraction. A box model is used to analyze the nocturnal nitrate radical chemistry and predict the N2O5 concentration. The uptake coefficient in the model is iterated until the predicted N2O5 concentration matches the measured concentration. The results suggest that during winter, the most important influence that might suppress N2O5 uptake is aerosol nitrate but that this effect does not suppress uptake coefficients enough to limit the rate of NOx loss through N2O5 hydrolysis. N2O5 hydrolysis was found to dominate the nocturnal chemistry during this study consuming ~80% of nocturnal gas phase nitrate radical production. Typically, less than 15% of the total nitrate radical production remained in the form of nocturnal species at sunrise when they are photolyzed and reform NO2. © 2013. Her Majesty the Queen in Right of Canada. American Geophysical Union

    The primary and recycling sources of OH during the NACHTT-2011 campaign: HONO as an important OH primary source in the wintertime

    No full text
    We present OH observations from Nitrogen, Aerosol Composition, and Halogens on a Tall Tower 2011 (NACHTT-11) held at the Boulder Atmospheric Observatory in Weld County, Colorado. Average OH levels at noon were ~ 2.7 × 106 molecules cm-3 at 2 m above ground level. Nitrous acid (HONO) photolysis was the dominant OH source (80.4%) during this campaign, while alkene ozonolysis (4.9%) and ozone photolysis (14.7%) were smaller contributions to OH production. To evaluate recycling sources of OH from HO2 and RO2, an observationally constrained University of Washington Chemical Mechanism (UWCM) box model (version 2.1) was employed to simulate ambient OH levels over several scenarios. For the base run, not constrained by observed HONO, the model significantly underestimated OH by a factor of 5.3 in the morning (9:00–11:00) and by a factor of 3.2 in the afternoon (13:00–15:00). The results suggest that known chemistry cannot constrain HONO and, subsequently, OH during the observational period. When HONO is constrained in the model by observations (< 50 m), the discrepancy between observation and model simulation improves to a factor of 1.3 in the morning and a factor 1.1 in the afternoon, within the 35% estimated instrumental uncertainty. However, the model produces both a morning and afternoon maximum in OH, in contrast to the observations, which show strong evidence for morning OH production but no distinct morning maximum. Two additional OH sources were also considered, although they do not improve the differences in modeled and measured temporal OH profiles. First, the impact of daytime HONO gradients near the ground surface (< 20 m) was evaluated. Strong HONO gradients were observed between 06:00 and 09:00 MST (mountain standard time), especially within 20 m of the surface. When constrained to HONO observed below 20 m (rather than 50 m), the model produced an even larger morning OH maximum, in contrast to the observations. Second, Cl atoms from ClNO2 photolysis producing RO2 from reaction with alkanes, while significant, produced steady state Cl atom levels (~ 103 atoms cm3) that were too low to significantly perturb measured OH through reactions of organic peroxy radicals produced from Cl reactions with volatile organic compounds

    On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California

    Get PDF
    The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we analyze observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect to OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the largest portion of the total organic reactivity increases exponentially with temperature and is dominated by small, oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls. We find that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 29 °C. As a consequence, NOx reductions are the most effective control option for reducing the frequency of future ozone violations in the southern SJV. © 2014 Author(s)
    corecore