228 research outputs found

    Data Integration and Reservoir Characterization of the Pennsylvanian Bartlesville Sandstone

    Get PDF
    The Glenn Pool Oil Field of Northeastern Oklahoma was established as the first major oil discovery of the fledgling state of Oklahoma. Fully developed by 1912, the field is now nearing depletion even under secondary and tertiary recovery efforts after production for approximately 100 years. Large amounts of residual oil estimated to still be in place have motivated exploration into other recovery methods, including polymer flooding and horizontal drilling. Success of these programs is dependent upon accurate characterization of the reservoir. Because most of the drilling occurred many decades ago, much of the data associated with this field predates electric well logging and has not been integrated with contemporary databases. To establish a more accurate characterization of the reservoir, these data have been digitized and integrated with current data available to further delineate the Glenn Pool Reservoir. Using information from original drilling records, surveyed well locations, water flood studies, and historical maps, a more sharply defined characterization has been generated for the productive Bartlesville, or Glenn Pool, Sandstone

    Prevalence of extreme detergent resistance among the \u3ci\u3eEnterobacteriaceae\u3c/i\u3e

    Get PDF
    The detergent-resistance properties of 208 independent isolates of the Enterobacteriaceae have been examined. Of these bacterial strains, 200 were able to grow in the presence of ≥5% sodium dodecyl sulfate, including all members of the Klebsielleae tribe. This resistance does not appear to be plasmid encoded. It is proposed that detergent-resistant organisms he termed saponotolerant or saponophilic, by analogy with other microorganisms occupying harsh ecological niches. In contrast to their prevalent resistance to anionic detergents, not one of the 208 strains tested was found to grow in the presence of three different cationic detergents. This sensitivity to cationic detergents may be of significance in combating nosocomial infections. La resistance it I\u27 action de detergents a ete evaluee chez 208 souches non-apparentees d\u27 Enterobacteriaceae. Deux cents de ces souches bacteriennes incluant tous les membres de la tribu des Klebsielleae ont ete capables de pousser en presence d\u27une concentration ≥5% de dodecyl sulfate de sodium. Cette resistance ne semble pas de nature plasmidique. Pour designer ces organismes resistants aux detergents, il est propose d\u27utiliser les termes saponotolerants ou saponophiles par analogie avec d\u27autres microorganismes qui occupent aussi des niches ecologiques hostiles. Contrastant avec la forte prevalence des souches resistantes aux detergents anioniques, on constate qu\u27aucune des 208 souches n\u27etait capable de pousser en presence de trois detergents cationiques differents. Cette sensibilite aux detergents cationiques pourrait s\u27averer interessante it exploiter dans la lutte aux infections nosocomiales

    Assessment of Estrogenic Endocrine-Disrupting Chemical Actions in the Brain Using in Vivo Somatic Gene Transfer

    Get PDF
    Estrogenic endocrine-disrupting chemicals abnormally stimulate vitellogenin gene expression and production in the liver of many male aquatic vertebrates. However, very few studies demonstrate the effects of estrogenic pollutants on brain function. We have used polyethylenimine-mediated in vivo somatic gene transfer to introduce an estrogen response element–thymidine kinase–luciferase (ERE-TK-LUC) construct into the brain. To determine if waterborne estrogenic chemicals modulate gene transcription in the brain, we injected the estrogen-sensitive construct into the brains of Nieuwkoop-Faber stage 54 Xenopus laevis tadpoles. Both ethinylestradiol (EE2; p < 0.002) and bisphenol A (BPA; p < 0.03) increased luciferase activity by 1.9- and 1.5-fold, respectively. In contrast, low physiologic levels of 17β-estradiol had no effect (p > 0.05). The mixed antagonist/agonist tamoxifen was estrogenic in vivo and increased (p < 0.003) luciferase activity in the tadpole brain by 2.3-fold. There have been no previous reports of somatic gene transfer to the fish brain; therefore, it was necessary to optimize injection and transfection conditions for the adult goldfish (Carassius auratus). Following third brain ventricle injection of cytomegalovirus (CMV)-green fluorescent protein or CMV-LUC gene constructs, we established that cells in the telencephalon and optic tectum are transfected. Optimal transfections were achieved with 1 μg DNA complexed with 18 nmol 22 kDa polyethylenimine 4 days after brain injections. Exposure to EE2 increased brain luciferase activity by 2-fold in males (p < 0.05) but not in females. Activation of an ERE-dependent luciferase reporter gene in both tadpole and fish indicates that waterborne estrogens can directly modulate transcription of estrogen-responsive genes in the brain. We provide a method adaptable to aquatic organisms to study the direct regulation of estrogen-responsive genes in vivo

    Selective Gold Precipitation by a Tertiary Diamide Driven by Thermodynamic Control

    Get PDF
    The simple diamide ligand L was previously shown to selectively precipitate gold from acidic solutions typical of e-waste leach streams, with precipitation of gallium, iron, tin, and platinum possible under more forcing conditions. Herein, we report direct competition experiments to afford the order of selectivity. Thermal analysis indicates that the gold-, gallium-, and iron-containing precipitates present as the most thermodynamically stable structures at room temperature, while the tin-containing structure does not. Computational modeling established that the precipitation process is thermodynamically driven, with ion exchange calculations matching the observed experimental selectivity ordering. Calculations also show that the stretched ligand conformation seen in the X-ray crystal structure of the gold-containing precipitate is more strained than in the structures of the other metal precipitates, indicating that intermolecular interactions likely dictate the selectivity ordering. This was confirmed through a combination of Hirshfeld, noncovalent interaction (NCI), and quantum theory of atoms in molecules (QTAIM) analyses, which highlight favorable halogen···halogen contacts between metalates and pseudo-anagostic C-H···metal interactions in the crystal structure of the gold-containing precipitate.</p

    CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase complex (SCFCyclin F). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCFCyclin F substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration

    ADAM19: A Novel Target for Metabolic Syndrome in Humans and Mice

    Get PDF
    Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with insulin resistance, which may ultimately culminate in type 2 diabetes (T2D). We sought to ascertain whether the human metalloproteinase A Disintegrin and Metalloproteinase 19 (ADAM19) correlates with parameters of the metabolic syndrome in humans and mice. To determine the potential novel role of ADAM19 in the metabolic syndrome, we first conducted microarray studies on peripheral blood mononuclear cells from a well-characterised human cohort. Secondly, we examined the expression of ADAM19 in liver and gonadal white adipose tissue using an in vivo diet induced obesity mouse model. Finally, we investigated the effect of neutralising ADAM19 on diet induced weight gain, insulin resistance in vivo, and liver TNF- levels. Significantly, we show that, in humans, ADAM19 strongly correlates with parameters of the metabolic syndrome, particularly BMI, relative fat, HOMA-IR, and triglycerides. Furthermore, we identified that ADAM19 expression was markedly increased in the liver and gonadal white adipose tissue of obese and T2D mice. Excitingly, we demonstrate in our diet induced obesity mouse model that neutralising ADAM19 therapy results in weight loss, improves insulin sensitivity, and reduces liver TNF- levels. Our novel data suggest that ADAM19 is pro-obesogenic and enhances insulin resistance. Therefore, neutralisation of ADAM19 may be a potential therapeutic approach to treat obesity and T2D

    Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.

    Get PDF
    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis
    corecore