63 research outputs found
Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq
The utilisation of genome-wide transcriptomics has played a pivotal role in advancing the field of toxicology, allowing the mapping of transcriptional signatures to chemical exposures. These activities have uncovered several transcriptionally regulated pathways that can be utilised for assessing the perturbation impact of a chemical and also the identification of toxic mode of action. However, current transcriptomic platforms are not very amenable to high-throughput workflows due to, high cost, complexities in sample preparation and relatively complex bioinformatic analysis. Thus, transcriptomic investigations are usually limited in dose and time dimensions and are, therefore, not optimal for implementation in risk assessment workflows. In this study, we investigated a new cost-effective, transcriptomic assay, TempO-Seq, which alleviates the aforementioned limitations. This technique was evaluated in a 6-compound screen, utilising differentiated kidney (RPTEC/TERT1) and liver (HepaRG) cells and compared to non-transcriptomic label-free sensitive endpoints of chemical-induced disturbances, namely phase contrast morphology, xCELLigence and glycolysis. Non-proliferating cell monolayers were exposed to six sub-lethal concentrations of each compound for 24Â h. The results show that utilising a 2839 gene panel, it is possible to discriminate basal tissue-specific signatures, generate dose-response relationships and to discriminate compound-specific and cell type-specific responses. This study also reiterates previous findings that chemical-induced transcriptomic alterations occur prior to cytotoxicity and that transcriptomics provides in depth mechanistic information of the effects of chemicals on cellular transcriptional responses. TempO-Seq is a robust transcriptomic platform that is well suited for in vitro toxicity experiments.Horizon 2020(H2020)68100
Swab pooling enables rapid expansion of high-throughput capacity for SARS-CoV-2 community testing
Background: The challenges of rapid upscaling of testing capacity were a major lesson from the COVID-19 pandemic response. The need for process adjustments in high-throughput testing laboratories made sample pooling a challenging option to implement. / Objective: This study aimed to evaluate whether pooling samples at source (swab pooling) was as effective as qRT-PCR testing of individuals in identifying cases of SARS-CoV-2 in real-world community testing conditions using the same high-throughput pipeline. / Methods: Two cohorts of 10 (Pool10: 1,030 participants and 103 pools) and 6 (Pool6: 1,284 participants and 214 pools) samples per pool were tested for concordance, sensitivity, specificity, and Ct value differences with individual testing as reference. Results: Swab pooling allowed unmodified application of an existing high-throughput SARS-Cov-2 testing pipeline with only marginal loss of accuracy. For Pool10, concordance was 98.1% (95% Confidence interval: 93.3–99.8%), sensitivity was 95.7% (85.5–99.5%), and specificity was 100.0% (93.6–100.0%). For Pool6, concordance was 97.2% (94.0–99.0%), sensitivity was 97.5% (93.7–99.3%), and specificity was 96.4% (87.7–99.6%). Differences of outcomes measure between pool size were not significant. Most positive individual samples, which were not detected in pools, had very low viral concentration. If only individual samples with a viral concentration > 400 copies/ml (i.e. Ct value < 30) were considered positive, the overall sensitivity of pooling increased to 99.5%. / Conclusion: The study demonstrated high sensitivity and specificity by swab pooling and the immediate capability of high-throughput laboratories to implement this method making it an option in planning of rapid upscaling of laboratory capacity for future pandemics
Economic evaluation of genomic/genetic tests: a review and future directions
It has been suggested that health economists need to improve their methods in order to meet the challenges of evaluating genomic/genetic tests. In this article, we set out twelve challenges identified from a rapid review of the literature and suggest solutions to the challenges identified. Two challenges were common to all economic evaluations: choice of perspective and time-horizon. Five challenges were relevant for all diagnostic technologies: complexity of analysis; range of costs; under-developed evidence base; behavioral aspects; and choice of outcome metrics. The final five challenges were pertinent for genomic tests and only these may require methodological development: heterogeneity of tests and platforms, increasing stratification, capturing personal utility; incidental findings; and spillover effects. Current methods of economic evaluation are generally able to cope with genomic/genetic tests, although a renewed focus on specific decision-makers’ needs and a willingness to move away from cost-utility analysis may be required. Certain analysts may be constrained by reference cases developed primarily for the assessment of pharmaceuticals. The combined impact of multiple challenges may require analysts to be particularly careful in setting the scope of their analysis in order to ensure that feasibility is balanced with usefulness to the decision maker. A key issue is the under-developed evidence-base and it may be necessary to rethink translation processes to ensure sufficient, relevant evidence is available to support economic evaluation and adoption of genomic/genetic tests
SARS-CoV-2 positivity in asymptomatic-screened dental patients
Enhanced community surveillance is a key pillar of the public health response to COVID-19. Asymptomatic carriage of SARS-CoV-2 is a potentially significant source of transmission, yet remains relatively poorly understood. Disruption of dental services continues with significantly reduced capacity. Ongoing precautions include pre- and/or at appointment COVID-19 symptom screening and use of enhanced personal protective equipment (PPE). This study aimed to investigate SARS-CoV-2 infection in dental patients to inform community surveillance and improve understanding of risks in the dental setting. Thirty-one dental care centres across Scotland invited asymptomatic screened patients over 5-years-old to participate. Following verbal consent and completion of sociodemographic and symptom history questionnaire, trained dental teams took a combined oropharyngeal and nasal swab sample using standardised VTM-containing testkits. Samples were processed by the Lighthouse Lab and patients informed of their results by SMS/e-mail with appropriate self-isolation guidance in the event of a positive test. All positive cases were successfully followed up by the national contact tracing program. Over a 13-week period (from 3August to 31October2020) n=4,032 patients, largely representative of the population, were tested. Of these n=22 (0.5%; 95%CI 0.5%, 0.8%) tested positive for SARS-CoV-2. The positivity rate increased over the period, commensurate with uptick in community prevalence identified across all national testing monitoring data streams. To the best of our knowledge this is the first report of a COVID-19 testing survey in asymptomatic-screened patients presenting in a dental setting. The positivity rate in this patient group reflects the underlying prevalence in community at the time. These data are a salient reminder, particularly when community infection levels are rising, of the importance of appropriate ongoing Infection Prevention Control and PPE vigilance, which is relevant as healthcare team fatigue increases as the pandemic continues. Dental settings are a valuable location for public health surveillance
Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey
Background:
Decisions about the continued need for control measures to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on accurate and up-to-date information about the number of people testing positive for SARS-CoV-2 and risk factors for testing positive. Existing surveillance systems are generally not based on population samples and are not longitudinal in design.
Methods:
Samples were collected from individuals aged 2 years and older living in private households in England that were randomly selected from address lists and previous Office for National Statistics surveys in repeated cross-sectional household surveys with additional serial sampling and longitudinal follow-up. Participants completed a questionnaire and did nose and throat self-swabs. The percentage of individuals testing positive for SARS-CoV-2 RNA was estimated over time by use of dynamic multilevel regression and poststratification, to account for potential residual non-representativeness. Potential changes in risk factors for testing positive over time were also assessed. The study is registered with the ISRCTN Registry, ISRCTN21086382.
Findings:
Between April 26 and Nov 1, 2020, results were available from 1 191 170 samples from 280 327 individuals; 5231 samples were positive overall, from 3923 individuals. The percentage of people testing positive for SARS-CoV-2 changed substantially over time, with an initial decrease between April 26 and June 28, 2020, from 0·40% (95% credible interval 0·29–0·54) to 0·06% (0·04–0·07), followed by low levels during July and August, 2020, before substantial increases at the end of August, 2020, with percentages testing positive above 1% from the end of October, 2020. Having a patient-facing role and working outside your home were important risk factors for testing positive for SARS-CoV-2 at the end of the first wave (April 26 to June 28, 2020), but not in the second wave (from the end of August to Nov 1, 2020). Age (young adults, particularly those aged 17–24 years) was an important initial driver of increased positivity rates in the second wave. For example, the estimated percentage of individuals testing positive was more than six times higher in those aged 17–24 years than in those aged 70 years or older at the end of September, 2020. A substantial proportion of infections were in individuals not reporting symptoms around their positive test (45–68%, dependent on calendar time.
Interpretation:
Important risk factors for testing positive for SARS-CoV-2 varied substantially between the part of the first wave that was captured by the study (April to June, 2020) and the first part of the second wave of increased positivity rates (end of August to Nov 1, 2020), and a substantial proportion of infections were in individuals not reporting symptoms, indicating that continued monitoring for SARS-CoV-2 in the community will be important for managing the COVID-19 pandemic moving forwards.
Funding:
Department of Health and Social Care
A collaborative approach to exploring the future of Cancer treatment and care in relation to Precision Medicine: A design perspective.
The Precision Medicine and the Future of Cancer project was jointly conceived by the Innovation School at Glasgow School of Art and the Institute of Cancer Sciences at the University of Glasgow.
Graduating year Product Design students from the Innovation School were presented with a challenge-based project to produce a vision of the future based on current trends that relate to Precision Medicine(PM) and Cancer treatment. This project involved working closely with scientists, clinicians, patients, industry and academic professionals from Glasgow University, staff at Queen Elizabeth University Hospital and Clinical Innovation Zone, staff at Beatson West of Scotland Cancer Centre, Patient Representatives and external design experts from Studio AndThen and GOODD design consultancy. The objective of this project was to investigate, in both analytical and speculative ways, future forms and functions of cancer treatment and care in relation to Precision Medicine, to develop future scenarios and design artefacts, services, and the experiences associated with them.
One of the most significant societal shifts currently taking place within the field of PM is the transformation around what it means to be a patient and a professional working within this context. The public’s role is developing beyond once-passive patients into stakeholders valued within the medical industry and healthcare sector for their participation in clinical trials, and contribution towards policy-making and decision-making committees. This new dynamic is changing the traditional patient-doctor relationship and challenging the hegemony of medical practice at an institutional level. The impetus for this shift is relentless technological acceleration and increased scientific research, in particular driven by advances in PM.
This project asked students to consider what will happen in a cancer landscape ten years from now, where PM has evolved to the extent that new forms of medical practice, cancer treatment and care transform how we interact with each other, with professionals and the world around us. The brief gave students the opportunity to reflect on the underlying complexities regarding the future of health, technological acceleration, post-capitalism and human agency, to envision a future world context, develop it as an experiential exhibit, and produce the designed products, services and experiences for the people who might live and work within it.
The project was divided into two sections: The first was a collaborative stage where groups of students were assigned a specific area of focus from Social, Technological, Economic, Ethical, Educational, Political, Legal, Ecological [STEEEPLE]. These groups focused on researching and exploring their specific lenses and gathering as much information and understanding while working with external experts to further their knowledge. This group stage culminated in an exhibition of the collaborative understanding of what the future could look like in 10 years from now, after exploring the possible consequences of current actions.
The second stage saw students explore their individual response to the world that had been defined in the first stage. Each student had their own response to the research by iteratively creating a design outcome that was appropriate to the subject matter. This culminated in each student having created a design product/service/experience relating to the future scenario. A full report (Project Process Journal [PPJ]) is included within the repository of each student which breaks down their process of designing and the outcome they have designed.
The project aims to tackle the emerging possibilities where medical professionals and design can collaborate, to create a future where forms of medical practice are more preventative and are more appropriate for an aging population now and into the future.
The deposited materials are arranged as follows:
Readme files - two readme files relate to stage one and stage two of the project as outlined above.
Overview poster - gives a visual overview of the structure and timeline of the project.
Data folders - the data folders for stage one of the project are named for the lens through which each group viewed possible futures. The data folders for stage two of the project are named for the individual students who conducted the work
Symbiotic Futures: Health, Well-being and Care in the Post-Covid World
The "Symbiotic Futures: Health, Well-being and Care in the Post-Covid World" project was jointly conceived by the Innovation School at Glasgow School of Art and the Institute of Cancer Sciences at the University of Glasgow. The project partnership involved a community of experts working across both organisations including the University of Glasgow’s new Mazumdar-Shaw Advanced Research Centre (ARC).
Future experiences is a collaborative, futures-focused design project where students benefit from the input of a community of experts to design speculative future worlds and experiences based on research within key societal contexts.
This iteration of the project asked the students to consider what happens in the Post-Covid landscape ten years from now, where symbiotic experiences of health, well-being and care have evolved to the extent that new forms of medical practice, health communities and cultures of care transform how we interact with each other, with professionals and the world around us.
The GSA Innovation School’s final year BDes Product Design students and faculty formed a dynamic community of practice with health, wellbeing and care practitioners and researchers from The University of Glasgow and beyond. This gave the students the opportunity to reflect on the underlying complexities of the future of health, well-being and care, technological acceleration, human agency and quality of life, to envision a 2031 blueprint as a series of six future world exhibits, and design the products, services and system experiences for the people and environments within it.
In the first part of the project (Stage 1), Future worlds are groups of students working together on specific topics, to establish the context for their project and collaborate on research and development. In this iteration of Future Experiences, the "Health, Well-being and Care" worlds were clustered together around ‘People focused’ and ‘Environment focused’, but also joined up across these groups to create pairs of worlds, and in the process generate symbiosis between the groups. These worlds were then the starting points which the students explored in their individual projects.
The second part of the project (Stage 2) saw individual students select an aspect of their Future World research to develop as a design direction, which they then prototyped and produced as products, services, and/or systems. These are designed for specific communities, contexts or scenarios of use defined by the students to communicate a future experience.
These Future experiences reflect the societal contexts explored during the research phase, projected 10 years into the future, and communicated in a manner that makes the themes engaging and accessible.
The deposited materials are arranged as follows:
1. Project Landscape Map - A report and blueprint for the project that gives a visual overview of the structure and timeline of the project.
2. Stage one data folders - the data folders for stage one of the project are named after the themes the groups explored to create their Future Worlds.
3. Stage two data folders - the data folders for stage two of the project are named after the individual students who created the project
COVID-19 vaccination, risk-compensatory behaviours, and contacts in the UK
The physiological effects of vaccination against SARS-CoV-2 (COVID-19) are well documented, yet the behavioural effects not well known. Risk compensation suggests that gains in personal safety, as a result of vaccination, are offset by increases in risky behaviour, such as socialising, commuting and working outside the home. This is potentially important because transmission of SARS-CoV-2 is driven by contacts, which could be amplified by vaccine-related risk compensation. Here, we show that behaviours were overall unrelated to personal vaccination, but—adjusting for variation in mitigation policies—were responsive to the level of vaccination in the wider population: individuals in the UK were risk compensating when rates of vaccination were rising. This effect was observed across four nations of the UK, each of which varied policies autonomously
Risk of SARS-CoV-2 reinfection during multiple Omicron variant waves in the UK general population
SARS-CoV-2 reinfections increased substantially after Omicron variants emerged. Large-scale community-based comparisons across multiple Omicron waves of reinfection characteristics, risk factors, and protection afforded by previous infection and vaccination, are limited. Here we studied ~45,000 reinfections from the UK’s national COVID-19 Infection Survey and quantified the risk of reinfection in multiple waves, including those driven by BA.1, BA.2, BA.4/5, and BQ.1/CH.1.1/XBB.1.5 variants. Reinfections were associated with lower viral load and lower percentages of self-reporting symptoms compared with first infections. Across multiple Omicron waves, estimated protection against reinfection was significantly higher in those previously infected with more recent than earlier variants, even at the same time from previous infection. Estimated protection against Omicron reinfections decreased over time from the most recent infection if this was the previous or penultimate variant (generally within the preceding year). Those 14–180 days after receiving their most recent vaccination had a lower risk of reinfection than those >180 days from their most recent vaccination. Reinfection risk was independently higher in those aged 30–45 years, and with either low or high viral load in their most recent previous infection. Overall, the risk of Omicron reinfection is high, but with lower severity than first infections; both viral evolution and waning immunity are independently associated with reinfection
- …