3,450 research outputs found

    Cosmic-ray energy spectrum and composition up to the ankle - the case for a second Galactic component

    Get PDF
    We have carried out a detailed study to understand the observed energy spectrum and composition of cosmic rays with energies up to ~10^18 eV. Our study shows that a single Galactic component with subsequent energy cut-offs in the individual spectra of different elements, optimised to explain the observed spectra below ~10^14 eV and the knee in the all-particle spectrum, cannot explain the observed all-particle spectrum above ~2x10^16 eV. We discuss two approaches for a second component of Galactic cosmic rays -- re-acceleration at a Galactic wind termination shock, and supernova explosions of Wolf-Rayet stars, and show that the latter scenario can explain almost all observed features in the all-particle spectrum and the composition up to ~10^18 eV, when combined with a canonical extra-galactic spectrum expected from strong radio galaxies or a source population with similar cosmological evolution. In this two-component Galactic model, the knee at ~ 3x10^15 eV and the second knee at ~10^17 eV in the all-particle spectrum are due to the cut-offs in the first and second components, respectively. We also discuss several variations of the extra-galactic component, from a minimal contribution to scenarios with a significant component below the ankle (at ~4x10^18 eV), and find that extra-galactic contributions in excess of regular source evolution are neither indicated nor in conflict with the existing data. Our main result is that the second Galactic component predicts a composition of Galactic cosmic rays at and above the second knee that largely consists of helium or a mixture of helium and CNO nuclei, with a weak or essentially vanishing iron fraction, in contrast to most common assumptions. This prediction is in agreement with new measurements from LOFAR and the Pierre Auger Observatory which indicate a strong light component and a rather low iron fraction between ~10^17 and 10^18 eV.Comment: Added Table 4; Published in A&A, 595 (2016) A33 (Highlight paper

    Allogeneic NK cells induce the <i>in vitro</i> activation of monocyte-derived and conventional type-2 dendritic cells and trigger an inflammatory response under cancer-associated conditions

    Get PDF
    Natural killer (NK) cells are innate lymphocytes capable to recognize and kill virus-infected and cancer cells. In the past years, the use of allogeneic NK cells as anti-cancer therapy gained interest due to their ability to induce graft-versus-cancer responses without causing graft-versus-host disease and multiple protocols have been developed to produce high numbers of activated NK cells. While the ability of these cells to mediate tumor kill has been extensively studied, less is known about their capacity to influence the activity of other immune cells that may contribute to a concerted anti-tumor response in the tumor microenvironment (TME). In this study, we analyzed how an allogeneic off-the-shelf cord blood stem cell-derived NK-cell product influenced the activation of dendritic cells (DC). Crosstalk between NK cells and healthy donor monocyte-derived DC (MoDC) resulted in the release of IFNγ and TNF, MoDC activation, and the release of the T-cell-recruiting chemokines CXCL9 and CXCL10. Moreover, in the presence of prostaglandin-E2, NK cell/MoDC crosstalk antagonized the detrimental effect of IL-10 on MoDC maturation leading to higher expression of multiple (co-)stimulatory markers. The NK cells also induced activation of conventional DC2 (cDC2) and CD8 + T cells, and the release of TNF, GM-CSF, and CXCL9/10 in peripheral blood mononuclear cells of patients with metastatic colorectal cancer. The activated phenotype of MoDC/cDC2 and the increased release of pro-inflammatory cytokines and T-cell-recruiting chemokines resulting from NK cell/DC crosstalk should contribute to a more inflamed TME and may thus enhance the efficacy of T-cell-based therapies.</p

    PerR controls oxidative stress defence and aerotolerance but not motility-associated phenotypes of Campylobacter jejuni

    Get PDF
    The foodborne bacterial pathogen Campylobacter jejuni is an obligate microaerophile, which is exposed to atmospheric oxygen during transmission through the food chain. Survival under aerobic conditions requires the concerted control of oxidative stress systems, which in C. jejuni are intimately connected with iron metabolism via the PerR and Fur regulatory proteins. Here we have characterised the roles of C. jejuni PerR in oxidative stress- and motility phenotypes, and its regulon at the level of transcription, protein expression and promoter interactions. Insertional inactivation of perR in the C. jejuni reference strains NCTC 11168, 81-176 and 81116 did not result in any growth deficiencies, but strongly increased survival in atmospheric oxygen conditions, and allowed growth around filter discs infused with up to 30% H2O2 (8.8 M). Expression of catalase, alkyl hydroperoxide reductase, thioredoxin reductase and the Rrc desulforubrerythrin were increased in the perR mutant, and this was mediated at the transcriptional level as shown by electrophoretic mobility shift assays of the katA, ahpC and trxB promoters using purified PerR. Differential RNA-seq analysis of a fur perR mutant allowed the identification of eight previously unknown transcription start sites of genes controlled by either Fur and/or PerR. Finally, inactivation of perR in C. jejuni did not result in reduced motility, and did not reduce killing of Galleria melonella wax moth larvae. In conclusion, PerR plays an important role in controlling oxidative stress resistance and aerobic survival of C. jejuni, but this role does not extend into control of motility and associated phenotypes

    Analyzing phenological synchronicity using volunteered geographic information

    Get PDF

    Efficient estimation of energy transfer efficiency in light-harvesting complexes

    Full text link
    The fundamental physical mechanisms of energy transfer in photosynthetic complexes is not yet fully understood. In particular, the degree of efficiency or sensitivity of these systems for energy transfer is not known given their non-perturbative and non-Markovian interactions with proteins backbone and surrounding photonic and phononic environments. One major problem in studying light-harvesting complexes has been the lack of an efficient method for simulation of their dynamics in biological environments. To this end, here we revisit the second-order time-convolution (TC2) master equation and examine its reliability beyond extreme Markovian and perturbative limits. In particular, we present a derivation of TC2 without making the usual weak system-bath coupling assumption. Using this equation, we explore the long time behaviour of exciton dynamics of Fenna-Matthews-Olson (FMO) protein complex. Moreover, we introduce a constructive error analysis to estimate the accuracy of TC2 equation in calculating energy transfer efficiency, exhibiting reliable performance for environments with weak and intermediate memory and strength. Furthermore, we numerically show that energy transfer efficiency is optimal and robust for the FMO protein complex of green sulphur bacteria with respect to variations in reorganization energy and bath correlation time-scales.Comment: 16 pages, 9 figures, modified version, updated appendices and reference lis

    Hypothermic in situ perfusion of the porcine liver using Celsior or Ringer-lactate solution

    Get PDF
    BACKGROUND: Hypothermic perfusion (HP) of the liver is applied during total vascular exclusion (TVE) to reduce ischemic injury during liver resection. No studies have been performed comparing different perfusion solutions for HP. The aim of this experimental study was to compare Ringer-lactate solution (RL) with Celsior solution (Cs) for HP in a pig model of 60-min TVE. METHOD: Twenty pigs underwent 60-min TVE of the liver. Groups were TVE without HP (no-HP, n = 9), TVE with HP using RL (n = 6), and TVE with HP using Cs (n = 5). Blood and liver tissue samples were taken before TVE and during 24-h reperfusion. RESULTS: In the no-HP group, plasma aspartate aminotransferase values were significantly increased during reperfusion (p <0.05), while liver tissue pO(2) levels (p <0.01) were decreased when compared to the HP groups. After 24-h reperfusion, bile production and liver tissue glutathione content were significantly higher (p <0.05) in the Cs group (42.0 +/- 1.7 mL/h and 44.9 +/- 2.2 nmol/mg, respectively) as compared to the RL group (31.5 +/- 3.5 mL/h and 19.6 +/- 1.8 nmol/mg, respectively). CONCLUSION: The protective effect of HP during TVE was confirmed in this study. HP with Cs was more effective in reducing ischemic injury as compared to HP with R

    Anomalous crossover between thermal and shot noise in macroscopic diffusive conductors

    Get PDF
    We predict the existence of an anomalous crossover between thermal and shot noise in macroscopic diffusive conductors. We first show that, besides thermal noise, these systems may also exhibit shot noise due to fluctuations of the total number of carriers in the system. Then we show that at increasing currents the crossover between the two noise behaviors is anomalous, in the sense that the low frequency current spectral density displays a region with a superlinear dependence on the current up to a cubic law. The anomaly is due to the non-trivial coupling in the presence of the long range Coulomb interaction among the three time scales relevant to the phenomenon, namely, diffusion, transit and dielectric relaxation time.Comment: 4 pages, 2 figure

    Observations of the J = 2 → 1 line of carbon monoxide in the NGC 2024 nebula

    Get PDF
    Observations have been made of the J = 2 → 1 transition of 12CO and 13CO in the molecular cloud near NGC 2024. The most intense emission comes from the central regions of the nebula close to areas of high optical extinction. The source contains two hotspots, but no significant velocity gradient or line-broadening was observed. This is consistent with a model in which the emission arises mainly from the high-density interface between the expanding HII region and a neutral cloud. Measurements of the 13CO isotope indicates that τ13 > 1.7, but there is insufficient information to derive the density in the region. Analysis of data for Mon R2, however, using the radially collapsing cloud model, indicates a hydrogen density of ~2 × 104 cm-3 for that source
    corecore