32 research outputs found
Cross-modal interactions between audition, touch, and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations
Recent behavioral and event-related brain potential (ERP) studies have revealed cross-modal interactions in endogenous spatial attention between vision and audition, plus vision and touch. The present ERP study investigated whether these interactions reflect supramodal attentional control mechanisms, and whether similar cross-modal interactions also exist between audition and touch. Participants directed attention to the side indicated by a cue to detect infrequent auditory or tactile targets at the cued side. The relevant modality (audition or touch) was blocked. Attentional control processes were reflected in systematic ERP modulations elicited during cued shifts of attention. An anterior negativity contralateral to the cued side was followed by a contralateral positivity at posterior sites. These effects were similar whether the cue signaled which side was relevant for audition or for touch. They also resembled previously observed ERP modulations for shifts of visual attention, thus implicating supramodal mechanisms in the control of spatial attention. Following each cue, single auditory, tactile, or visual stimuli were presented at the cued or uncued side. Although stimuli in task-irrelevant modalities could be completely ignored, visual and auditory ERPs were nevertheless affected by spatial attention when touch was relevant, revealing cross-modal interactions. When audition was relevant, visual ERPs, but not tactile ERPs, were affected by spatial attention, indicating that touch can be decoupled from cross-modal attention when task-irrelevant
Top-down Inhibitory Motor Control is Preserved in Adults with Developmental Coordination Disorder
Two paradigms were employed to disentangle information processing from executive motor inhibition in adults with Developmental Coordination Disorder (DCD). Choice Reaction and Stop Signal Tasks were compared between 13 adults fulfilling DSM-5 DCD criteria and 42 typically developing adults. Additional analyses included 16 probable DCD (pDCD) participants, who had motor difficulties but did not fulfil DSM-5 criteria. Analyses employed frequentist and Bayesian modeling. While DCD+pDCD showed slower reaction times and difficulty initiating Go responses, no impairments in Stop actions were found. These findings indicated no executive deficit in DCD, suggesting that previous results may be explained by inefficient information processing
Recommended from our members
Adults with probable Developmental Coordination Disorder selectively process early visual, but not tactile information during action preparation. An electrophysiological study.
Developmental coordination disorder (DCD) is a neurodevelopmental condition affecting motor coordination in children and adults. Here, EEG signals elicited by visual and tactile stimuli were recorded while adult participants with and without probable DCD (pDCD) performed a motor task. The task cued reaching movements towards a location in visible peripersonal space as well as an area of unseen personal space. Event-related potentials elicited by visual and tactile stimuli revealed that visual processing was strongly affected by movement preparation in the pDCD group, even more than in controls. However, in contrast to the controls, tactile processing in unseen space was unaffected by movement preparation in the pDCD group. The selective use of sensory information from vision and proprioception is fundamental for the adaptive control of movements, and these findings suggest that this is impaired in DCD. Additionally, the pDCD group showed attenuated motor rhythms (beta: 13-30Hz) over sensorimotor regions following cues to prepare movements towards unseen personal space. The results reveal that individuals with pDCD exhibit differences in the neural mechanisms of spatial selection and action preparation compared to controls, which may underpin the sustained difficulties they experience. These findings provide new insights into the neural mechanisms potentially disrupted in this highly prevalent disorder
The influence of motor preparation on the processing of action-relevant visual features
Action preparation can facilitate performance in tasks of visual perception, for instance by speeding up responses to action-relevant stimulus features. However, it is unknown whether this facilitation reflects an influence on early perceptual processing, or instead post-perceptual processes. In three experiments, a combination of psychophysics and electroencephalography was used to investigate whether visual features are influenced by action preparation at the perceptual level. Participants were cued to prepare oriented reach-to-grasp actions before discriminating target stimuli oriented in the same direction as the prepared grasping action (congruent) or not (incongruent). As expected, stimuli were discriminated faster if their orientation was congruent, compared to incongruent, with the prepared action. However, action-congruency had no influence on perceptual sensitivity, regardless of cue-target interval and discrimination difficulty. The reaction time effect was not accompanied by modulations of early visual-evoked potentials. Instead, beta-band (13-30Hz) synchronization over sensorimotor brain regions was influenced by action preparation, indicative of improved response preparation. Together, the results suggest that action preparation may not modulate early visual processing of orientation, but likely influences higher order response or decision related processing. While early effects of action on spatial perception are well documented, separate mechanisms appear to govern non-spatial feature selection
White matter disturbances in major depressive disorder : a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group
Altres ajuts: The ENIGMA-Major Depressive Disorder working group gratefully acknowledges support from the NIH Big Data to Knowledge (BD2K) award (U54 EB020403 to PMT) and NIH grant R01 MH116147 (PMT). LS is supported by an NHMRC MRFF Career Development Fellowship (APP1140764). We wish to acknowledge the patients and control subjects that have particiaped int the study. We thank Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation, and Anna Oliynyk for quality checks. We thank Dorothee P. Auer and F. Holsboer for initiation of the RUD study. We wish to acknowledge the patients and control subjects that have particiaped int the study. We thank Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation, and Anna Oliynyk for quality checks. We thank Dorothee P. Auer and F. Holsboer for initiation of the RUD study. NESDA: The infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (Zon-Mw, grant number 10-000-1002) and is supported by participating universities (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen) and mental health care organizations, see www.nesda.nl. M-JvT was supported by a VENI grant (NWO grant number 016.156.077). UCSF: This work was supported by the Brain and Behavior Research Foundation (formerly NARSAD) to TTY; the National Institute of Mental Health (R01MH085734 to TTY; K01MH117442 to TCH) and by the American Foundation for Suicide Prevention (PDF-1-064-13) to TCH. Stanford: This work was supported by NIMH Grants R01MH59259 and R37101495 to IHG. MS is partially supported by an award funded by the Phyllis and Jerome Lyle Rappaport Foundation. Muenster: This work was funded by the German Research Foundation (SFB-TRR58, Projects C09 and Z02 to UD) and the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan3/012/17 to UD). Marburg: This work was funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5-1 and DA1151/5-2 to UD; KI 588/ 14-1, KI 588/14-2 to TK; KR 3822/7-1, KR 3822/7-2 to AK; JA 1890/ 7-1, JA 1890/7-2 to AJ). IMH-MDD: This work was supported by the National Healthcare Group Research Grant (SIG/15012) awarded to KS. Barcelona: This study was funded by two grants of the Fondo de Investigación Sanitaria from the Instituto de Salud Carlos III, by the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM). The author is funded through 'Miguel Servet' research contract (CP16-0020), co-financed by the European Regional Development Fund (ERDF) (2016-2019). QTIM: We thank the twins and singleton siblings who gave generously of their time to participate in the QTIM study. We also thank the many research assistants, radiographers, and IT support staff for data acquisition and DNA sample preparation. This study was funded by White matter disturbances in major depressive disorder: a coordinated analysis across 20 international. . . 1521 the National Institute of Child Health & Human Development (RO1 HD050735); National Institute of Biomedical Imaging and Bioengineering (Award 1U54EB020403-01, Subaward 56929223); National Health and Medical Research Council, Australia (Project Grants 496682, 1009064). NIH ENIGMA-BD2K U54 EB020403 (Thompson); R01 MH117601 (Jahanshad/Schmaal). Magdeburg: M.L. and M.W. are funded by SFB 779. Bipolar Family Study: This study has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013). This paper reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein. This work was also supported by a Wellcome Trust Strategic Award (104036/Z/14/Z). Minnesota Adolescent Depression Study: The study was funded by the National Institute of Mental Health (K23MH090421), the National Alliance for Research on Schizophrenia and Depression, the University of Minnesota Graduate School, the Minnesota Medical Foundation, and the Biotechnology Research Center (P41 RR008079 to the Center for Magnetic Resonance Research), University of Minnesota, and the Deborah E. Powell Center for Women's Health Seed Grant, University of Minnesota. Dublin: This study was supported by Science Foundation Ireland through a Stokes Professorhip grant to TF. MPIP: The MPIP Sample comprises patients included in the Recurrent Unipolar Depression (RUD) Case-Control study at the clinic of the Max Planck Institute of Psychiatry, Munich, German. The RUD study was supported by GlaxoSmithKline.Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD
Rubin-Euclid Derived Data Products:Initial Recommendations
This report is the result of a joint discussion between the Rubin and Euclid scientific communities. The work presented in this report was focused on designing and recommending an initial set of Derived Data products (DDPs) that could realize the science goals enabled by joint processing. All interested Rubin and Euclid data rights holders were invited to contribute via an online discussion forum and a series of virtual meetings. Strong interest in enhancing science with joint DDPs emerged from across a wide range of astrophysical domains: Solar System, the Galaxy, the Local Volume, from the nearby to the primaeval Universe, and cosmology
Crossmodal links in spatial attention are mediated by supramodal control processes: Evidence from event-related potentials
Abstract: Cross-modal links in spatial attention were studied in an experiment where participants had to detect peripheral tactile or visual targets on the attended side, while ignoring all stimuli on the unattended side and in the currently irrelevant modality. Both relevant locations and relevant modalities were specified on a trial-by-trial basis by auditory precues. Spatial orienting in the cue-target interval was reflected in anterior negativities and occipital positivities contralateral to the cued side, either when vision or touch was cued as relevant. These effects resembled previously reported ERP modulations during shifts of visual attention, implicating supramodal mechanisms in the control of spatial attention and demonstrating their independence of cue modality. Early effects of spatial attention on somatosensory and visual ERPs were of equivalent size for currently relevant and irrelevant modalities. Results support the idea that crossmodal links in spatial attention are mediated by supramodal control mechanisms
ERP Evidence for Cross-Modal Audiovisual Effects of Endogenous Spatial Attention within Hemifields
& Previous ERP studies have uncovered cross-modal inter-actions in endogenous spatial attention. Directing attention to one side to judge stimuli from one particular modality can modulate early modality-specific ERP components not only for that modality, but also for other currently irrelevant modal-ities. However, past studies could not determine whether the spatial focus of attention in the task-irrelevant secondary modality was similar to the primary modality, or was instead diffuse across one hemifield. Here, auditory or visual stimuli could appear at any one of four locations (two on each side). In different blocks, subjects judged stimuli at only one of these four locations, for an auditory (Experiment 1) or visual (Experiment 2) task. Early attentional modulations of visual and auditory ERPs were found for stimuli at the currently relevant location, compared with those at the irrelevant location within the same hemifield, thus demonstrating within-hemifield tuning of spatial attention. Crucially, this was found not only for the currently relevant modality, but also for the currently irrelevant modality. Moreover, these within-hemifield attention effects were statistically equivalent regardless of the task relevance of the modality, for both the auditory and visual ERP data. These results demonstrate that within-hemifield spatial attention for one task-relevant modal-ity can transfer cross-modally to a task-irrelevant modality, consistent with spatial selection at a multimodal level of representation. &
Temporal dynamics of lateralized ERP components elicited during endogenous attentional shifts to relevant tactile events
To investigate the temporal dynamics of lateralized event-related brain potential (ERP) components elicited during covert shifts of spatial attention, ERPs were recorded in a task where central visual symbolic cues instructed participants to direct attention to their left or right hand in order to detect infrequent tactile targets presented to that hand, and to ignore tactile stimuli presented to the other hand, as well as all randomly intermingled peripheral visual stimuli. In different blocks, the stimulus onset asynchrony (SOA) between cue and target was 300 ms, 700 ms, or 1,100 ms. Anterior and posterior ERP modulations sensitive to the direction of an attentional shift were time-locked to the attentional cue, rather than to the anticipated arrival of a task-relevant stimulus. These components thus appear to reflect central attentional control rather than the anticipatory preparation of sensory areas. In addition, attentional modulations of ERPs to task-irrelevant visual stimuli were found, providing further evidence for crossmodal links in spatial attention between touch and vision