16 research outputs found

    High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting

    Get PDF
    The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (ΞΌCT) for interpretation

    The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity

    Get PDF
    Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from opportunistic pathogens

    Invasive trophoblast promote stromal fibroblast decidualization via Profilin 1 and ALOX5

    Get PDF
    During the establishment of pregnancy, extravillous trophoblast (EVT) must invade into the uterine decidua to facilitate decidual artery remodelling to create the placental blood supply. The local decidual environment is thought to regulate trophoblast invasion, however these interactions are poorly defined in humans. Recent evidence in women suggests impaired decidualization is associated with miscarriage and preeclampsia. Primary human endometrial stromal cells (HESC) and first trimester extravillous trophoblast (EVTs) were used to assess the effect of EVT-secreted factors on HESC decidualization, adhesion, proliferation and migration. We determined the role of profilin (PFN)1, an EVT-secreted factor, on HESC function and identified a downstream target of PFN1. EVT-secreted factors induced HESC decidualization and enhanced decidualized HESC adhesion, proliferation and migration. Recombinant PFN1 enhanced methoxyprogesterone acetate-induced HESC decidualization and proliferation. PFN1 down-regulated the expression of lipoxygenase arachidonate 5-lipoxygenase (ALOX5) in HESC and THP-1 macrophages. ALOX5 localised to decidual cells and CD68+macrophages in 1st trimester decidua. This study demonstrated that EVT secretions, including PFN1, enhanced HESC decidualization and motility. This study has identified a new pathway that facilitates appropriate decidualization during the establishment of pregnancy

    Phenotypic variation in bacteria: the role of feedback regulation

    Get PDF
    To survive in rapidly changing environmental conditions, bacteria have evolved a diverse set of regulatory pathways that govern various adaptive responses. Recent research has reinforced the notion that bacteria use feedback-based circuitry to generate population heterogeneity in natural situations. Using artificial gene networks, it has been shown that a relatively simple β€˜wiring’ of a bacterial genetic system can generate two or more stable subpopulations within an overall genetically homogeneous population. This review discusses the ubiquity of these processes throughout nature, as well as the presumed molecular mechanisms responsible for the heterogeneity observed in a selection of bacterial species.
    corecore