353 research outputs found
Dilaton-Axion hair for slowly rotating Kerr black holes
Campbell et al. demonstrated the existence of axion ``hair'' for Kerr black
holes due to the non-trivial Lorentz Chern-Simons term and calculated it
explicitly for the case of slow rotation. Here we consider the dilaton coupling
to the axion field strength, consistent with low energy string theory and
calculate the dilaton ``hair'' arising from this specific axion source.Comment: 13 pages + 1 fi
Recommended from our members
Time dependence of triplet-singlet excitation transfer from compact poly rA to bound dye at 77 K
The nonexponential phosphorescence decay of a highly folded form of poly-riboadenylic acid (poly rA) with noncovalently bound dye is explained by a novel application of a well-known theory of electronic excitation transfer based on the Förster mechanism. This theory, originally used to describe singlet-singlet energy transfer from donor molecules to an acceptor in a solution, is here applied to the transfer of triplet excitation from the adenine (in poly rA) to the singlet manifold of either of the bound dyes, ethidium bromide or proflavine. New experimental data are presented that allow straight-forward theoretical interpretation. These data fit the form predicted by the theory, U(t) exp (-Bt[superscript 1/2]), where U(t) is the decay of the poly rA phosphorescence in the absence of dye, for a range of relative concentrations of either dye. The self-consistency of these theoretical fits is demonstrated by the proportionality of B to the square root of the Förster triplet-singlet overlap integrals for transfer from poly rA to each of the dyes, as demanded by the theory. From these self-consistent values of B, the theory enables one to deduce the mean packing density of nucleotides in this folded poly rA, which we estimate to be approximately ~ 1 nmâ»Âł. We conclude that some variations of the method described here may be useful for deducing packing densities of nucleotides in other compact nucleic acid structures.This is the publisherâs final pdf. The article is copyrighted by The Biophysical Society and published by Cell Press/Elsevier. It can be found at: http://www.cell.com/biophysj
Selective Area Deposited Blue GaN-InGaN Multiple-Quantum Well Light Emitting Diodes over Silicon Substrates
We report on fabrication and characterization of blue GaNâInGaN multi-quantum well (MQW)light-emitting diodes(LEDs) over (111) silicon substrates. Device epilayers were fabricated using unique combination of molecular beam epitaxy and low-pressure metalorganic chemical vapor depositiongrowth procedure in selective areas defined by openings in a SiO2mask over the substrates. This selective area deposition procedure in principle can produce multicolor devices using a very simple fabrication procedure. The LEDs had a peak emission wavelength of 465 nm with a full width at half maximum of 40 nm. We also present the spectral emission data with the diodes operating up to 250â°C. The peak emission wavelengths are measured as a function of both dc and pulse bias current and plate temperature to estimate the thermal impedance
Numerical test of the damping time of layer-by-layer growth on stochastic models
We perform Monte Carlo simulations on stochastic models such as the
Wolf-Villain (WV) model and the Family model in a modified version to measure
mean separation between islands in submonolayer regime and damping time
of layer-by-layer growth oscillations on one dimension. The
stochastic models are modified, allowing diffusion within interval upon
deposited. It is found numerically that the mean separation and the damping
time depend on the diffusion interval , leading to that the damping time is
related to the mean separation as for the WV model
and for the Family model. The numerical results are in
excellent agreement with recent theoretical predictions.Comment: 4 pages, source LaTeX file and 5 PS figure
Cancer cells exploit an orphan RNA to drive metastatic progression.
Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies
Inappropriate p53 Activation During Development Induces Features of CHARGE Syndrome
CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70-90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p53(25,26,53,54)), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p53(25,26,53,54) mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p53(25,26,53,54)(/-) embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome
Competing mechanisms for step meandering in unstable growth
The meander instability of a vicinal surface growing under step flow
conditions is studied within a solid-on-solid model. In the absence of edge
diffusion the selected meander wavelength agrees quantitatively with the
continuum linear stability analysis of Bales and Zangwill [Phys. Rev. B {\bf
41}, 4400 (1990)]. In the presence of edge diffusion a local instability
mechanism related to kink rounding barriers dominates, and the meander
wavelength is set by one-dimensional nucleation. The long-time behavior of the
meander amplitude differs in the two cases, and disagrees with the predictions
of a nonlinear step evolution equation [O. Pierre-Louis et al., Phys. Rev.
Lett. {\bf 80}, 4221 (1998)]. The variation of the meander wavelength with the
deposition flux and with the activation barriers for step adatom detachment and
step crossing (the Ehrlich-Schwoebel barrier) is studied in detail. The
interpretation of recent experiments on surfaces vicinal to Cu(100) [T.
Maroutian et al., Phys. Rev. B {\bf 64}, 165401 (2001)] in the light of our
results yields an estimate for the kink barrier at the close packed steps.Comment: 8 pages, 7 .eps figures. Final version. Some errors in chapter V
correcte
Fatty Acid Metabolites Combine with Reduced ÎČ Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes
Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, ÎČ oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised ÎČ oxidation to promote disease-predictive inflammation in human T2D. Although glycolysis generally fuels inflammation, Nicholas, Proctor, and Agrawal et al. report that PBMCs from subjects with type 2 diabetes use a different mechanism to support chronic inflammation largely independent of fuel utilization. Loss- and gain-of-function experiments in cells from healthy subjects show mitochondrial alterations combine with increases in fatty acid metabolites to drive chronic T2D-like inflammation
A novel class of microRNA-recognition elements that function only within open reading frames.
MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
- âŠ