6,023 research outputs found
Alternative model of the Antonov problem
Astrophysical systems will never be in a real Thermodynamic equilibrium: they
undergo an evaporation process due to the fact that the gravity is not able to
confine the particles. Ordinarily, this difficulty is overcome by enclosing the
system in a rigid container which avoids the evaporation. We proposed an
energetic prescription which is able to confine the particles, leading in this
way to an alternative version of the Antonov isothermal model which unifies the
well-known isothermal and polytropic profiles. Besides of the main features of
the isothermal sphere model: the existence of the gravitational collapse and
the energetic region with a negative specific heat, this alternative model has
the advantage that the system size naturally appears as a consequence of the
particles evaporation.Comment: RevTex4, 9 pages, 10 figures, Version Submitted to PR
Numerical study of two-body correlation in a 1D lattice with perfect blockade
We compute the dynamics of excitation and two-body correlation for two-level
"pseudoatoms" in a 1D lattice. We adopt a simplified model where pair
excitation within a finite range is perfectly blocked. Each superatom is
initially in the ground state, and then subjected to an external driving laser
with Rabi frequency satisfying a Poissonian distribution, mimicking the
scenario as in Rydberg gases. We find that two-body quantum correlation drops
very fast with the distance between pseudoatoms. However, the total correlation
decays slowly even at large distance. Our results may be useful to the
understanding of Rydberg gases in the strong blockade regime
Capturing architects’ designerly ways of knowing about users: Exploring an ethnographic research approach
Transferring knowledge about diverse users’ experiences from research into
architectural design practice is not straightforward. Effective knowledge transfer
requires taking into account architects’ design practice. This paper explores a research
approach to gain insight into architects’ designerly ways of knowing about users. It
discusses why an ethnographic research approach offers a means to study a culture of
practice such as architectural design practice. A fieldwork account from a pilot study
in an architecture firm provides insight into the experiential issues architects deal with.
It illustrates how fieldwork techniques can be applied to map the socio-material
aspects (e.g., different stakeholders and design materials) that mediate knowledge
about users. Exploiting these aspects of architectural design practice is expected to
open new ways of thinking about informing architects about users’ experiences. For
instance, there lies an opportunity in engaging architects’ creative representational
skills, which challenges architects’ and researchers’ roles in knowledge transfer
Probing Electron-Capture Supernovae: X-Ray Binaries in Starbursts
Presenting population models of high-mass X-ray binaries (HMXBs) formed after
bursts of star formation, we investigate the effect of electron-capture
supernovae (ECS) of massive ONeMg white dwarfs and the hypothesis that ECS
events are associated with typically low supernova kicks imparted to the
nascent neutron stars. We identify an interesting ECS bump in the time
evolution of HMXB numbers; this bump is caused by significantly increased
production of wind-fed HMXBs 20-60 Myr post starburst. The amplitude and age
extent of the ECS bump depend on the strength of ECS kicks and the mass range
of ECS progenitors. We also find that ECS-HMXBs form through a specific
evolutionary channel that is expected to lead to binaries with Be donors in
wide orbits. These characteristics, along with their sensitivity to ECS
properties, provide us with an intriguing opportunity to probe ECS physics and
progenitors through studies of starbursts of different ages. Specifically, the
case of the Small Magellanic Cloud, with a significant observed population of
Be HMXBs and starburst activity 30-60 Myr ago, arises as a promising laboratory
for understanding the role of electron-capture supernovae in neutron star
formation.Comment: 5 pages, 3 figures, Published by ApJ in 07/0
Guiding of cold atoms by a red-detuned laser beam of moderate power
We report measurements on the guiding of cold Rb atoms from a
magneto-optical trap by a continuous light beam over a vertical distance of 6.5
mm. For moderate laser power (85 mW) we are able to capture around 40% of
the cold atoms. Although the guide is red-detuned, the optical scattering rate
at this detuning (70 GHz) is acceptably low. For lower detuning (30
GHz) a larger fraction was guided but radiation pressure starts to push the
atoms upward, effectively lowering the acceleration due to gravity. The
measured guided fraction agrees well with an analytical model.Comment: final version, 6 pages, incl. 6 figure
Ideal kink instability of a magnetic loop equilibrium
The force-free coronal loop model by Titov & D\'emoulin (1999} is found to be
unstable with respect to the ideal kink mode, which suggests this instability
as a mechanism for the initiation of flares. The long-wavelength () mode
grows for average twists \Phi\ga3.5\pi (at a loop aspect ratio of
5). The threshold of instability increases with increasing major loop radius,
primarily because the aspect ratio then also increases. Numerically obtained
equilibria at subcritical twist are very close to the approximate analytical
equilibrium; they do not show indications of sigmoidal shape. The growth of
kink perturbations is eventually slowed down by the surrounding potential
field, which varies only slowly with radius in the model. With this field a
global eruption is not obtained in the ideal MHD limit. Kink perturbations with
a rising loop apex lead to the formation of a vertical current sheet below the
apex, which does not occur in the cylindrical approximation.Comment: Astron. Astrophys. Lett., accepte
On the Rarity of X-Ray Binaries with Naked Helium Donors
The paucity of known High-Mass X-Ray Binaries (HMXB) with naked He donor
stars (hereafter He star) in the Galaxy has been noted over the years as a
surprising fact, given the significant number of Galactic HMXBs containing
H-rich donors, which are expected to be their progenitors. This contrast has
further sharpened in light of recent observations uncovering a preponderance of
HMXBs hosting loosely bound Be donors orbiting neutron stars (NS), which would
be expected to naturally evolve into He-HMXBs through dynamical mass transfer
onto the NS and a common-envelope (CE) phase. Hence, reconciling the large
population of Be-HMXBs with the observation of only one He-HMXB can help
constrain the dynamics of CE physics. Here, we use detailed stellar structure
and evolution models and show that binary mergers of HMXBs during CE events
must be common in order to resolve the tension between these observed
populations. We find that, quantitatively, this scenario remains consistent
with the typically adopted energy parameterization of CE evolution, yielding
expected populations which are not at odds with current observations. However,
future observations which better constrain the underlying population of loosely
bound O/B-NS binaries are likely to place significant constraints on the
efficiency of CE ejection.Comment: 9 pages, 5 figures, In Pres
Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface
We have observed a distance-dependent absorption linewidth of cold Rb
atoms close to a dielectric-vacuum interface. This is the first observation of
modified radiative properties in vacuum near a dielectric surface. A cloud of
cold atoms was created using a magneto-optical trap (MOT) and optical molasses
cooling. Evanescent waves (EW) were used to observe the behavior of the atoms
near the surface. We observed an increase of the absorption linewidth with up
to 25% with respect to the free-space value. Approximately half the broadening
can be explained by cavity-quantum electrodynamics (CQED) as an increase of the
natural linewidth and inhomogeneous broadening. The remainder we attribute to
local Stark shifts near the surface. By varying the characteristic EW length we
have observed a distance dependence characteristic for CQED.Comment: 6 pages, 6 figures, some minor revision
- …