794 research outputs found
Technical note: development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis
Purpose: To make an adaptable, head shaped radionuclide phantom to simulate molecular imaging of the brain using clinical acquisition and reconstruction protocols. This will allow the characterization and correction of scanner characteristics, and improve the accuracy of clinical image analysis, including the application of databases of normal subjects. Methods: A fused deposition modeling 3D printer was used to create a head shaped phantom made up of transaxial slabs, derived from a simulated MRI dataset. The attenuation of the printed polylactide (PLA), measured by means of the Hounsfield unit on CT scanning, was set to match that of the brain by adjusting the proportion of plastic filament and air (fill ratio). Transmission measurements were made to verify the attenuation of the printed slabs. The radionuclide distribution within the phantom was created by adding 99mTc pertechnetate to the ink cartridge of a paper printer and printing images of gray and white matter anatomy, segmented from the same MRI data. The complete subresolution sandwich phantom was assembled from alternate 3D printed slabs and radioactive paper sheets, and then imaged on a dual headed gamma camera to simulate an HMPAO SPECT scan. Results: Reconstructions of phantom scans successfully used automated ellipse fitting to apply attenuation correction. This removed the variability inherent in manual application of attenuation correction and registration inherent in existing cylindrical phantom designs. The resulting images were assessed visually and by count profiles and found to be similar to those from an existing elliptical PMMA phantom. Conclusions: The authors have demonstrated the ability to create physically realistic HMPAO SPECT simulations using a novel head-shaped 3D printed subresolution sandwich method phantom. The phantom can be used to validate all neurological SPECT imaging applications. A simple modification of the phantom design to use thinner slabs would make it suitable for use in PET
NF-κB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation
Activation of NF-κB in inflammatory breast cancer (IBC) is associated with loss of estrogen receptor (ER) expression, indicating a potential crosstalk between NF-κB and ER. In this study, we examined the activation of NF-κB in IBC and non-IBC with respect to ER and EGFR and/or ErbB2 expression and MAPK hyperactivation. A qRT–PCR based ER signature was evaluated in tumours with and without transcriptionally active NF-κB, as well as correlated with the expression of eight NF-κB target genes. Using a combined ER/NF-κB signature, hierarchical clustering was executed. Hyperactivation of MAPK was investigated using a recently described MAPK signature (Creighton et al, 2006), and was linked to tumour phenotype, ER and EGFR and/or ErbB2 overexpression. The expression of most ER-modulated genes was significantly elevated in breast tumours without transcriptionally active NF-κB. In addition, the expression of most ER-modulated genes was significantly anticorrelated with the expression of most NF-κB target genes, indicating an inverse correlation between ER and NF-κB activation. Clustering using the combined ER and NF-κB signature revealed one cluster mainly characterised by low NF-κB target gene expression and a second one with elevated NF-κB target gene expression. The first cluster was mainly characterised by non-IBC specimens and IHC ER+ breast tumours (13 out of 18 and 15 out of 18 respectively), whereas the second cluster was mainly characterised by IBC specimens and IHC ER− breast tumours (12 out of 19 and 15 out of 19 respectively) (Pearson χ2, P<0.0001 and P<0.0001 respectively). Hyperactivation of MAPK was associated with both ER status and tumour phenotype by unsupervised hierarchical clustering using the MAPK signature and was significantly reflected by overexpression of EGFR and/or ErbB2. NF-κB activation is linked to loss of ER expression and activation in IBC and in breast cancer in general. The inverse correlation between NF-κB activation and ER activation is due to EGFR and/or ErbB2 overexpression, resulting in NF-κB activation and ER downregulation
The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer
Vascular endothelial growth factor (VEGF)-A inhibitors exhibit unseen high responses and toxicity in recurrent epithelial ovarian cancer suggesting an important role for the VEGF/VEGFR pathway. We studied the correlation of VEGF signalling and AKT/mTOR signalling. Using a tissue microarray of clinical samples (N=86), tumour cell immunohistochemical staining of AKT/mTOR downstream targets, pS6 and p4E-BP1, together with tumour cell staining of VEGF-A and pVEGFR2 were semi-quantified. A correlation was found between the marker for VEGFR2 activation (pVEGFR2) and a downstream target of AKT/mTOR signalling (pS6) (R=0.29; P=0.002). Additional gene expression analysis in an independent cDNA microarray dataset (N=24) showed a negative correlation (R=−0.73, P<0.0001) between the RPS6 and the VEGFR2 gene, which is consistent as the gene expression and phosphorylation of S6 is inversely regulated. An activated tumour cell VEGFR2/AKT/mTOR pathway was associated with increased incidence of ascites (χ2, P=0.002) and reduced overall survival of cisplatin–taxane-based patients with serous histology (N=32, log-rank test, P=0.04). These data propose that VEGF-A signalling acts on tumour cells as a stimulator of the AKT/mTOR pathway. Although VEGF-A inhibitors are classified as anti-angiogenic drugs, these data suggest that the working mechanism has an important additional modality of targeting the tumour cells directly
HER-2 status of circulating tumor cells in a metastatic breast cancer cohort: A comparative study on characterization techniques
Background
Personalized targeted treatment in metastatic breast cancer relies on accurate assessment
of molecular aberrations, e.g. overexpression of Human Epidermal growth factor Receptor
2 (HER-2). Molecular interrogation of circulating tumor cells (CTCs) can provide an attractive alternative for real-time biomarker assessment. However, implementation of CellSearch-based HER-2 analysis has been limited. Immunofluorescent (IF) image
interpretation is crucial, as different HER-2 categories have been described. Major questions in CTC research are how these IF categories reflect gene expression and amplification, and if we should consider ‘medium’ HER-2 expressing CTCs for patient selection.
Methods
Tumor cells from spiked cell lines (n = 8) and CTCs (n = 116 samples) of 85 metastatic
breast cancer patients were enriched using CellSearch. Comparative analysis of HER-2
expression by IF imaging (ACCEPT, DEPArray, and visual scoring) with qRT-PCR and
HER-2/neu FISH was performed.
Results
Automated IF HER-2-profiling by DEPArray and ACCEPT delivered comparable results.
There was a 98% agreement between 17 trained observers (visual scoring) and ACCEPT
considering HER-2neg and HER-2high expressing CTCs. However, 89% of HER-2med
expressing CTCs by ACCEPT were scored negative by observers. HER-2high expressing
tumor cells demonstrated HER-2/neu gene amplification, whereas HER-2neg and HER-2med
expressing tumor cells and CTCs by ACCEPT were copy-number neutral. All patients with HER-2-positive archival tumors had �1 HER-2high expressing CTCs, while 80% of HER-2-
negative patients did not. High relative gene expression of HER-2 measured on enriched
CTC lysates correlated with having �1 HER-2high expressing CTCs.
Conclusion
Automated images analysis has enormous potential for clinical implementation. HER-2
characterization and clinical trial design should be focused on HER-2high expressing CTCs
- …