58 research outputs found

    Symptoms after Ingestion of Pig Whipworm Trichuris suis Eggs in a Randomized Placebo-Controlled Double-Blind Clinical Trial

    Get PDF
    Symptoms after human infection with the helminth Trichuris suis have not previously been described. Exposure to helminths has been suggested as immune therapy against allergy and autoimmune diseases. We randomized adults with allergic rhinitis to ingest a dose of 2500 T. suis eggs or placebo every 21 days for 168 days (total 8 doses) in a double-blind clinical trial. In a previous publication, we reported a lack of efficacy and a high prevalence of adverse gastrointestinal reactions. The aim of the present study was to present a detailed description of the adverse event data and post-hoc analyses of gastrointestinal reactions. Adverse events and severity (mild, moderate, severe) were recorded daily by subjects, classified by organ using MedDRA 10.0, and event rates compared between subjects on T. suis treatment vs. subjects on placebo. T. suis-specific serum IgG antibodies were measured by a fluoroenzymeimmunoassay (Phadia ApS). During 163 days complete follow-up, subjects ingesting T. suis eggs (N = 49) had a three to 19-fold higher rate of events (median duration, 2 days) with gastrointestinal reactions (moderate to severe flatulence, diarrhea, and upper abdominal pain) compared with placebo subjects (N = 47). The highest incidence of affected subjects was seen from the first few days and until day 42 (3rd dose): 63% vs. 29% for placebo; day 163: 76% vs. 49% for placebo. Seroprevalences increased concurrently in the T. suis group: Day 59, 50%; day 90, 91%; day 170, 93%. The combined duration of episodes with onset before day 42 was ≤14 days in 80% of affected subjects. Age, gender, total IgE, and recent intestinal symptoms at baseline did not predict gastrointestinal side effects. In conclusion, during the first 2 months, repeated ingestions of 2500 T. suis eggs caused frequent gastrointestinal reactions lasting up to 14 days, whereas 4 months further treatment mainly provoked a subclinical stimulation

    Genome Sequencing and Analysis of a Type A Clostridium perfringens Isolate from a Case of Bovine Clostridial Abomasitis

    Get PDF
    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified

    Worm Burden-Dependent Disruption of the Porcine Colon Microbiota by Trichuris suis Infection

    Get PDF
    Helminth infection in pigs serves as an excellent model for the study of the interaction between human malnutrition and parasitic infection and could have important implications in human health. We had observed that pigs infected with Trichuris suis for 21 days showed significant changes in the proximal colon microbiota. In this study, interactions between worm burden and severity of disruptions to the microbial composition and metabolic potentials in the porcine proximal colon microbiota were investigated using metagenomic tools. Pigs were infected by a single dose of T. suis eggs for 53 days. Among infected pigs, two cohorts were differentiated that either had adult worms or were worm-free. Infection resulted in a significant change in the abundance of approximately 13% of genera detected in the proximal colon microbiota regardless of worm status, suggesting a relatively persistent change over time in the microbiota due to the initial infection. A significant reduction in the abundance of Fibrobacter and Ruminococcus indicated a change in the fibrolytic capacity of the colon microbiota in T. suis infected pigs. In addition, ∼10% of identified KEGG pathways were affected by infection, including ABC transporters, peptidoglycan biosynthesis, and lipopolysaccharide biosynthesis as well as α-linolenic acid metabolism. Trichuris suis infection modulated host immunity to Campylobacter because there was a 3-fold increase in the relative abundance in the colon microbiota of infected pigs with worms compared to naïve controls, but a 3-fold reduction in worm-free infected pigs compared to controls. The level of pathology observed in infected pigs with worms compared to worm-free infected pigs may relate to the local host response because expression of several Th2-related genes were enhanced in infected pigs with worms versus those worm-free. Our findings provided insight into the dynamics of the proximal colon microbiota in pigs in response to T. suis infection

    Where Are All the Mycobacterium avium Subspecies paratuberculosis in Patients with Crohn's Disease?

    Get PDF
    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic granulomatous inflammation of the intestines, Johne's disease, in dairy cows and every other species of mammal in which it has been identified. MAP has been identified in the mucosal layer and deeper bowel wall in patients with Crohn's disease by methods other than light microscopy, and by direct visualization in small numbers by light microscopy. MAP has not been accepted as the cause of Crohn's disease in part because it has not been seen under the microscope in large numbers in the intestines of patients with Crohn's disease. An analysis of the literature on the pathology of Crohn's disease and on possible MAP infection in Crohn's patients suggests that MAP might directly infect endothelial cells and adipocytes and cause them to proliferate, causing focal obstruction within already existing vessels (including granuloma formation), the development of new vessels (neoangiogenesis and lymphangiogenesis), and the “creeping fat” of the mesentery that is unique in human pathology to Crohn's disease but also occurs in bovine Johne's disease. Large numbers of MAP might therefore be found in the mesentery attached to segments of intestine affected by Crohn's disease rather than in the bowel wall, the blood and lymphatic vessels running through the mesentery, or the mesenteric fat itself. The walls of fistulas might result from the neoangiogenesis or lymphangiogenesis that occurs in the bowel wall in Crohn's disease and therefore are also possible sites of large numbers of MAP. The direct visualization of large numbers of MAP organisms in the tissues of patients with Crohn's disease will help establish that MAP causes Crohn's disease

    Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis

    Full text link
    corecore