41 research outputs found

    ICT networks power consumption

    Get PDF

    Evaluating the energy consumption and the energy savings potential in ICT backbone networks

    Get PDF

    Scalability and power consumption of static optical core networks

    Full text link
    Abstract — A large amount of traffic in core networks is highly aggregated and core nodes are interconnected by high-capacity links. Thus, most of the traffic demands in the core area can be accommodated by providing more or less static connections between ingress and egress nodes. In this paper, we describe and study three particular realizations of static optical core networks and compare them with the dynamic, packet switched architecture based on wavelength-division multiplexing (WDM) transmission and conventional electronic packet routers. We introduce an analytical model for estimating the average number of required switch ports for different network topologies in order to assess both scalability and power consumption of the considered network concepts. The results show that the concept of a static optically transparent core network promises high energy efficiency, and scalability to several tens of nodes. I

    Scalability and power consumption of static optical core networks

    Get PDF
    Abstract — A large amount of traffic in core networks is highly aggregated and core nodes are interconnected by high-capacity links. Thus, most of the traffic demands in the core area can be accommodated by providing more or less static connections between ingress and egress nodes. In this paper, we describe and study three particular realizations of static optical core networks and compare them with the dynamic, packet switched architecture based on wavelength-division multiplexing (WDM) transmission and conventional electronic packet routers. We introduce an analytical model for estimating the average number of required switch ports for different network topologies in order to assess both scalability and power consumption of the considered network concepts. The results show that the concept of a static optically transparent core network promises high energy efficiency, and scalability to several tens of nodes. I

    Power consumption modeling in optical multilayer networks

    Get PDF
    The evaluation of and reduction in energy consumption of backbone telecommunication networks has been a popular subject of academic research for the last decade. A critical parameter in these studies is the power consumption of the individual network devices. It appears that across different studies, a wide range of power values for similar equipment is used. This is a result of the scattered and limited availability of power values for optical multilayer network equipment. We propose reference power consumption values for Internet protocol/multiprotocol label switching, Ethernet, optical transport networking and wavelength division multiplexing equipment. In addition we present a simplified analytical power consumption model that can be used for large networks where simulation is computationally expensive or unfeasible. For illustration and evaluation purpose, we apply both calculation approaches to a case study, which includes an optical bypass scenario. Our results show that the analytical model approximates the simulation result to over 90% or higher and that optical bypass potentially can save up to 50% of power over a non-bypass scenario
    corecore