40 research outputs found
UHE tau neutrino flux regeneration while skimming the Earth
The detection of Earth-skimming tau neutrinos has turned into a very
promising strategy for the observation of ultra-high energy cosmic neutrinos.
The sensitivity of this channel crucially depends on the parameters of the
propagation of the tau neutrinos through the terrestrial crust, which governs
the flux of emerging tau leptons that can be detected. One of the
characteristics of this propagation is the possibility of regeneration through
multiple conversions, which are often neglected
in the standard picture. In this paper, we solve the transport equations
governing the propagation and compare the flux of emerging tau
leptons obtained allowing regeneration or not. We discuss the validity of the
approximation of neglecting the regeneration using different
scenarios for the neutrino-nucleon cross-sections and the tau energy losses.Comment: 8 pages, 8 figure
Tau energy losses at ultra-high energy: continuous versus stochastic treatment
We study the energy losses of the tau lepton in matter through
electromagnetic processes at ultra-high energy (UHE). We use both a stochastic
and a continuous framework to treat these interactions and compare the flux of
tau leptons propagated after some amount of matter. We discuss the accuracy of
the approximation of continuous energy losses by studying the propagation in
standard rock of taus with both mono-energetic and power law injection spectra.Comment: 7 pages, 8 figure
Randall-Sundrum black holes and strange stars
It has recently been suggested that the existence of bare strange stars is
incompatible with low scale gravity scenarios. It has been claimed that in such
models, high energy neutrinos incident on the surface of a bare strange star
would lead to catastrophic black hole growth. We point out that for the flat
large extra dimensional case, the parts of parameter space which give rise to
such growth are ruled out by other methods. We then go on to show in detail how
black holes evolve in the the Randall-Sundrum two brane scenario where the
extra dimensions are curved. We find that catastrophic black hole growth does
not occur in this situation either. We also present some general expressions
for the growth of five dimensional black holes in dense media.Comment: 16 pages, more numerics has lead to different path to same
conclusion. Accepted in PR
Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts
We derive a conservative coincidence time window for joint searches of
gravita-tional-wave (GW) transients and high-energy neutrinos (HENs, with
energies above 100GeV), emitted by gamma-ray bursts (GRBs). The last are among
the most interesting astrophysical sources for coincident detections with
current and near-future detectors. We take into account a broad range of
emission mechanisms. We take the upper limit of GRB durations as the 95%
quantile of the T90's of GRBs observed by BATSE, obtaining a GRB duration upper
limit of ~150s. Using published results on high-energy (>100MeV) photon light
curves for 8 GRBs detected by Fermi LAT, we verify that most high-energy
photons are expected to be observed within the first ~150s of the GRB. Taking
into account the breakout-time of the relativistic jet produced by the central
engine, we allow GW and HEN emission to begin up to 100s before the onset of
observable gamma photon production. Using published precursor time differences,
we calculate a time upper bound for precursor activity, obtaining that 95% of
precursors occur within ~250s prior to the onset of the GRB. Taking the above
different processes into account, we arrive at a time window of tHEN - tGW ~
[-500s,+500s]. Considering the above processes, an upper bound can also be
determined for the expected time window of GW and/or HEN signals coincident
with a detected GRB, tGW - tGRB ~ tHEN - tGRB ~ [-350s,+150s]
Event reconstruction for KM3NeT/ORCA using convolutional neural networks
The KM3NeT research infrastructure is currently under construction at two
locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino
detector off the French coast will instrument several megatons of seawater with
photosensors. Its main objective is the determination of the neutrino mass
ordering. This work aims at demonstrating the general applicability of deep
convolutional neural networks to neutrino telescopes, using simulated datasets
for the KM3NeT/ORCA detector as an example. To this end, the networks are
employed to achieve reconstruction and classification tasks that constitute an
alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT
Letter of Intent. They are used to infer event reconstruction estimates for the
energy, the direction, and the interaction point of incident neutrinos. The
spatial distribution of Cherenkov light generated by charged particles induced
in neutrino interactions is classified as shower- or track-like, and the main
background processes associated with the detection of atmospheric neutrinos are
recognized. Performance comparisons to machine-learning classification and
maximum-likelihood reconstruction algorithms previously developed for
KM3NeT/ORCA are provided. It is shown that this application of deep
convolutional neural networks to simulated datasets for a large-volume neutrino
telescope yields competitive reconstruction results and performance
improvements with respect to classical approaches
Event reconstruction for KM3NeT/ORCA using convolutional neural networks
The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino de tector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower-or track-like, and the main background processes associated with the detection of atmospheric neutrinos are
recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance
improvements with respect to classical approaches
The Antares And Km3Net Neutrino Telescopes: Status And Outlook For Acoustic Studies
International audienceThe ANTARES detector has been operating continuously since 2007 in the Mediterranean Sea, demonstrating the feasibility of an undersea neutrino telescope. Its superior angular resolution in the reconstruction of neutrino events of all flavors results in unprecedented sensitivity for neutrino source searches in the southern sky at TeV energies, so that valuable constraints can be set on the origin of the cosmic neutrino flux discovered by theIceCube detector. The next generation KM3NeT neutrino telescope is now under construction, featuring two detectors with the same technology but different granularity: ARCA designed to search for high energy (TeV-PeV) cosmic neutrinos and ORCA designed to study atmospheric neutrino oscillations at the GeV scale, focusing on the determination of the neutrino mass hierarchy. Both detectors use acoustic devices for positioning calibration, and provide testbeds for acoustic neutrino detection
Neutrinos et micro trous noirs: deux tests phénoménologiques des modèles d'univers-membrane
Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
Made visible by the invisible
International audienceUsing data from the IceCube telescope, a study presents the firstattempt at obtaining geophysical information about Earth's internalstructure from the flux of neutrinos that pass through it