8,694 research outputs found
Small is Unsustainable?:Alternative Food Movement in the Low Countries, 1969-1990
This article analyses how the alternative food movement in the Low Countries successfully promoted the ideal of small-scale production and consumption since the 1970s. This history highlights an interpretation of sustainability which addressed global problems by a return to the local. Operating on a small scale enabled the alternative food movement to bridge the gap between social and environmental concerns. Although alternative food remained marginal within the quickly expanding agricultural sector of both Belgium and the Netherlands, the movement enlarged its reach through eco-labels and cooperation with large retail chains. As a result, small-scale practices could not be maintained. In the Netherlands, the alternative food movement subsequently emphasised the environment, whereas the social dimension was more pronounced in Belgium. Small-scale production and consumption became firmly entrenched as ideals, but, in practice, the balance between social, environmental, and economic concerns that activists had hoped for, moved out of reach
Single-electron tunneling in InP nanowires
We report on the fabrication and electrical characterization of field-effect
devices based on wire-shaped InP crystals grown from Au catalyst particles by a
vapor-liquid-solid process. Our InP wires are n-type doped with diameters in
the 40-55 nm range and lengths of several microns. After being deposited on an
oxidized Si substrate, wires are contacted individually via e-beam fabricated
Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor
temperature dependence. The distance between the electrodes varies between 0.2
and 2 micron. The electron density in the wires is changed with a back gate.
Low-temperature transport measurements show Coulomb-blockade behavior with
single-electron charging energies of ~1 meV. We also demonstrate energy
quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure
Prognostic value of bcl-2 expression in invasive breast cancer.
Expression of the bcl-2 proto-oncogene was studied immunohistochemically in 251 invasive ductal breast carcinomas (median follow-up time 91 months, range 24-186 months) and the results were correlated with clinicopathological data and prognostic variables. Sixty-three (25%) tumours were scored bcl-2 negative and 188 (75%) tumours were bcl-2 positive. No relationship could be observed between bcl-2 status and tumour grade, pTNM staging or menopausal status. A strong positive relationship was demonstrated between bcl-2 immunoreactivity and oestrogen receptor status (P < 0.001) and progesterone receptor status (P < 0.001). No prognostic value was demonstrated for bcl-2 expression on disease-free survival and overall survival in axillary node-negative breast cancer patients. However, in axillary node-positive breast cancer patients multivariate analysis demonstrated absence of bcl-2 expression to be independently related to shortened disease-free survival (P = 0.003) and shortened overall survival (P < 0.001). Our results suggest a potential important role for bcl-2 expression as a modulator of response to adjuvant therapy in breast cancer
Quantum algorithm for the Boolean hidden shift problem
The hidden shift problem is a natural place to look for new separations
between classical and quantum models of computation. One advantage of this
problem is its flexibility, since it can be defined for a whole range of
functions and a whole range of underlying groups. In a way, this distinguishes
it from the hidden subgroup problem where more stringent requirements about the
existence of a periodic subgroup have to be made. And yet, the hidden shift
problem proves to be rich enough to capture interesting features of problems of
algebraic, geometric, and combinatorial flavor. We present a quantum algorithm
to identify the hidden shift for any Boolean function. Using Fourier analysis
for Boolean functions we relate the time and query complexity of the algorithm
to an intrinsic property of the function, namely its minimum influence. We show
that for randomly chosen functions the time complexity of the algorithm is
polynomial. Based on this we show an average case exponential separation
between classical and quantum time complexity. A perhaps interesting aspect of
this work is that, while the extremal case of the Boolean hidden shift problem
over so-called bent functions can be reduced to a hidden subgroup problem over
an abelian group, the more general case studied here does not seem to allow
such a reduction.Comment: 10 pages, 1 figur
Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs
We examine the existence and structure of particular sets of mutually
unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known
power-of-prime MUB constructions, we restrict ourselves to using maximally
entangled stabilizer states as MUB vectors. Consequently, these bipartite
entangled stabilizer MUBs (BES MUBs) provide no local information, but are
sufficient and minimal for decomposing a wide variety of interesting operators
including (mixtures of) Jamiolkowski states, entanglement witnesses and more.
The problem of finding such BES MUBs can be mapped, in a natural way, to that
of finding maximum cliques in a family of Cayley graphs. Some relationships
with known power-of-prime MUB constructions are discussed, and observables for
BES MUBs are given explicitly in terms of Pauli operators.Comment: 8 pages, 1 figur
Experimental implementation of an adiabatic quantum optimization algorithm
We report the realization of a nuclear magnetic resonance computer with three
quantum bits that simulates an adiabatic quantum optimization algorithm.
Adiabatic quantum algorithms offer new insight into how quantum resources can
be used to solve hard problems. This experiment uses a particularly well suited
three quantum bit molecule and was made possible by introducing a technique
that encodes general instances of the given optimization problem into an easily
applicable Hamiltonian. Our results indicate an optimal run time of the
adiabatic algorithm that agrees well with the prediction of a simple
decoherence model.Comment: REVTeX, 5 pages, 4 figures, improved lay-out; accepted for
publication in Physical Review Letter
Scaling of running time of quantum adiabatic algorithm for propositional satisfiability
We numerically study quantum adiabatic algorithm for the propositional
satisfiability. A new class of previously unknown hard instances is identified
among random problems. We numerically find that the running time for such
instances grows exponentially with their size. Worst case complexity of quantum
adiabatic algorithm therefore seems to be exponential.Comment: 7 page
- âŠ