32 research outputs found
VACTERL association etiology: The impact of de novo and rare copy number variations
Copy number variations (CNVs), either DNA gains or losses, have been found at common regions throughout the human genome. Most CNVs neither have a pathogenic significance nor result in disease-related phenotypes but, instead, reflect the normal population variance. However, larger CNVs, which often arise de novo, are frequently associated with human disease. A genetic contribution has long been suspected in VACTERL (Vertebral, Anal, Cardiac, TracheoEsophageal fistula, Renal and Limb anomalies) association. The anomalies observed in this association overlap with several monogenetic conditions associated with mutations in specific genes, e.g. Townes Brocks (SALL1), Feingold syndrome (MYCN) or Fanconi anemia. So far VACTERL association has typically been considered a diagnosis of exclusion. Identifying recurrent or de novo genomic variations in individuals with VACTERL association could make it easier to distinguish VACTERL association from other syndromes and could provide insight into disease mechanisms. Sporadically, de novo CNVs associated with VACTERL are described in literature. In addition to this literature review of genomic variation in published VACTERL association patients, we describe CNVs present in 68 VACTERL association patients collected in our institution. De novo variations (>30 kb) are absent in our VACTERL association cohort. However, we identified recurrent rare CNVs which, although inherited, could point to mechanisms or biological processes contributing to this constellation of developmental defects
Copy number variations in 375 patients with oesophageal atresia and/or tracheoesophageal fistula
Oesophageal atresia (OA) with or without tracheoesophageal fistula (TOF) are rare anatomical congenital malformations whose cause is unknown in over 90% of patients. A genetic background is suggested, and among the reported genetic defects are copy number variations (CNVs). We hypothesized that CNVs contribute to OA/TOF development. Quantifying their prevalence could aid in genetic diagnosis and clinical care strategies. Therefore, we profiled 375 patients in a combined Dutch, American and German cohort via genomic microarray and compared the CNV profiles with their unaffected parents and published control cohorts. We identified 167 rare CNVs containing genes (frequency<0.0005 in our in-house cohort). Eight rare CNVs - in six patients - were de novo, including one CNV previously associated with oesophageal disease. (hg19 chr7:g.(143820444-143839360)-(159119486-159138663)del) 1.55% of isolated OA/TOF patients and 1.62% of patients with additional congenital anomalies had de novo CNVs. Furthermore, three (15q13.3, 16p13.3 and 22q11.2) susceptibility loci were identified based on their overlap with known OA/TOF-associated CNV syndromes and overlap with loci in published CNV association case-control studies in developmental delay. Our study suggests that CNVs contribute to OA/TOF development. In addition to the identified likely deleterious de novo CNVs, we detected 167 rare CNVs. Although not directly disease-causing, these CNVs might be of interest, as they can act as a modifier in a multiple hit model, or as the second hit in a recessive condition
Channel Coupling in Reactions
The sensitivity of momentum distributions, recoil polarization observables,
and response functions for nucleon knockout by polarized electrons to channel
coupling in final-state interactions is investigated using a model in which
both the distorting and the coupling potentials are constructed by folding
density-dependent effective interactions with nuclear transition densities.
Calculations for O are presented for 200 and 433 MeV ejectile energies,
corresponding to proposed experiments at MAMI and TJNAF, and for C at 70
and 270 MeV, corresponding to experiments at NIKHEF and MIT-Bates. The relative
importance of charge exchange decreases as the ejectile energy increases, but
remains significant for 200 MeV. Both proton and neutron knockout cross
sections for large recoil momenta, MeV/c, are substantially
affected by inelastic couplings even at 433 MeV. Significant effects on the
cross section for neutron knockout are also predicted at smaller recoil
momenta, especially for low energies. Polarization transfer for proton knockout
is insensitive to channel coupling, even for fairly low ejectile energies, but
polarization transfer for neutron knockout retains nonnegligible sensitivity to
channel coupling for energies up to about 200 MeV. The present results suggest
that possible medium modifications of neutron and proton electromagnetic form
factors for can be studied using recoil
polarization with relatively little sensitivity due to final state
interactions.Comment: Substantially revised version accepted by Phys. Rev. C; shortened to
49 pages including 21 figure
Zijn wij, de behandelende artsen, uiteindelijk verantwoordelijk voor de toename van allergieën bij kinderen?
Tijdschrift voor Geneeskunde6111807-813TGEK
Prevalence of drug allergy in Singaporean children
Singapore Medical Journal50121158-116
Aspirin, Reye syndrome, Kawasaki disease, and allergies; a reconsideration of the links
10.1136/adc.2004.055681Archives of Disease in Childhood89121178ADCH
Monitoring and treatment practices of childhood asthma in Singapore: A questionnaire study
Singapore Medical Journal50154-6
An approach to preschool wheezing: To label as asthma?
10.1097/WOX.0b013e3181fc7fa1World Allergy Organization Journal311253-25