251 research outputs found

    Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude

    Get PDF
    Despite decades of research on the physiology and biochemistry of nitrate/nitrite-respiring microorganisms, little is known regarding their metabolic response to temperature, especially under in situ conditions. The temperature regulation of microbial communities that mediate anammox and denitrification was investigated in near shore permeable sediments at polar, temperate, and subtropical sites with annual mean temperatures ranging from -5 to 23 degrees C. Total N-2 production rates were determined using the isotope pairing technique in intact core incubations under diffusive and simulated advection conditions and ranged from 2 to 359 mu mol N m(-2) d(-1). For the majority of sites studied, N-2 removal was 2-7 times more rapid under simulated advective flow conditions. Anammox comprised 6-14% of total N-2 production at temperate and polar sites and was not detected at the subtropical site. Potential rates of denitrification and anammox were determined in anaerobic slurries in a temperature gradient block incubator across a temperature range of -1 degrees C to 42 degrees C. The highest optimum temperature (T-opt) for denitrification was 36 degrees C and was observed in subtropical sediments, while the lowest T-opt of 21 degrees C was observed at the polar site. Seasonal variation in the T-opt was observed at the temperate site with values of 26 and 34 degrees C in winter and summer, respectively. The T-opt values for anammox were 9 and 26 degrees C at the polar and temperate sites, respectively. The results demonstrate adaptation of denitrifying communities to in situ temperatures in permeable marine sediments across a wide range of temperatures, whereas marine anammox bacteria may be predominately psychrophilic to psychrotolerant. The adaptation of microbial communities to in situ temperatures suggests that the relationship between temperature and rates of N removal is highly dependent on community structure

    Contribution of Red Blood Cells and Platelets to Blood Clot Computed Tomography Imaging and Compressive Mechanical Characteristics

    Get PDF
    Thrombus computed tomography (CT) imaging characteristics may correspond with thrombus mechanical properties and thus predict thrombectomy success. The impact of red blood cell (RBC) content on these properties (imaging and mechanics) has been widely studied. However, the additional effect of platelets has not been considered. The objective of the current study was to examine the individual and combined effects of blood clot RBC and platelet content on resultant CT imaging and mechanical characteristics. Human blood clot analogues were prepared from a combination of preselected RBC volumes and platelet concentrations to decouple their contributions. The resulting clot RBC content (%) and platelet content (%) were determined using Martius Scarlet Blue and CD42b staining, respectively. Non-contrast and contrast-enhanced CT (NCCT and CECT) scans were performed to measure the clot densities. CECT density increase was taken as a proxy for clinical perviousness. Unconfined compressive mechanics were analysed by performing 10 cycles of 80% strain. RBC content is the major determinant of clot NCCT density. However, additional consideration of the platelet content improves the association. CECT density increase is influenced by clot platelet and not RBC content. Platelet content is the dominant component driving clot stiffness, especially at high strains. Both RBC and platelet content contribute to the clot's viscoelastic and plastic compressive properties. The current in vitro results suggest that CT density is reflective of RBC content and subsequent clot viscoelasticity and plasticity, and that perviousness reflects the clot's platelet content and subsequent stiffness. However, these indications should be confirmed in a clinical stroke cohort

    Contribution of Red Blood Cells and Platelets to Blood Clot Computed Tomography Imaging and Compressive Mechanical Characteristics

    Get PDF
    Thrombus computed tomography (CT) imaging characteristics may correspond with thrombus mechanical properties and thus predict thrombectomy success. The impact of red blood cell (RBC) content on these properties (imaging and mechanics) has been widely studied. However, the additional effect of platelets has not been considered. The objective of the current study was to examine the individual and combined effects of blood clot RBC and platelet content on resultant CT imaging and mechanical characteristics. Human blood clot analogues were prepared from a combination of preselected RBC volumes and platelet concentrations to decouple their contributions. The resulting clot RBC content (%) and platelet content (%) were determined using Martius Scarlet Blue and CD42b staining, respectively. Non-contrast and contrast-enhanced CT (NCCT and CECT) scans were performed to measure the clot densities. CECT density increase was taken as a proxy for clinical perviousness. Unconfined compressive mechanics were analysed by performing 10 cycles of 80% strain. RBC content is the major determinant of clot NCCT density. However, additional consideration of the platelet content improves the association. CECT density increase is influenced by clot platelet and not RBC content. Platelet content is the dominant component driving clot stiffness, especially at high strains. Both RBC and platelet content contribute to the clot's viscoelastic and plastic compressive properties. The current in vitro results suggest that CT density is reflective of RBC content and subsequent clot viscoelasticity and plasticity, and that perviousness reflects the clot's platelet content and subsequent stiffness. However, these indications should be confirmed in a clinical stroke cohort

    The extent and effects of patient involvement in pictogram design for written drug information : a short systematic review

    Get PDF
    This short review provides insight into the extent and effectiveness of patient involvement in the design and evaluation of pictograms to support patient drug information. Pubmed, CINAHL, Cochrane Library, Embase, PsycINFO, Academic Search Premier and Web of Science were searched systematically; the 73 included articles were evaluated with the MMAT. We see that, usually, non-patient end-users are involved in the design of pharmaceutical pictograms - patients are more commonly involved in the final evaluation of pictogram success. Repeated involvement of (non-)patients aids the design of effective pharmaceutical pictograms, although there is limited evidence for such effects on patient perception of drug information or health behaviour.Publisher PDFPeer reviewe

    Simulation modelling to study the impact of adding comprehensive stroke centres. Can we deliver endovascular thrombectomy sooner?

    Get PDF
    Objectives: Regional accessibility and distribution of endovascular thrombectomy (EVT) capable facilities, that is, comprehensive stroke centres (CSCs), may significantly influence time to treatment. We analysed the impact of adding CSCs in the north of the Netherlands, a region with roughly 1.7 million inhabitants currently served by one CSC and eight primary stroke centres (PSCs).Design: Monte Carlo simulation modelling was used to establish new CSCs in our region by hypothetically upgrading existing PSCs to CSCs and ensuing adjustments in health services set-up.Setting: One CSC and eight PSCs in the north of the Netherlands.Participants: 165 patients with acute stroke treated with EVT and underwent interhospital transfer between PSC and CSC (drip and ship patients).Primary and secondary outcomes: Time from onset to groin (OTG) puncture and predicted probability of favourable outcome (modified Rankin Scale 0-2) after 90 days. Sensitivity analyses were performed to assess uncertainty in workflow efficiency of CSCs.Results: Adding one or two CSCs would reduce the OTG time up to approximately 17 min and increases the predicted probability of favourable outcome by approximately 2%. Sensitivity analyses revealed that 'slow-acting' CSCs may reduce OTG by 3-5 min compared with 24-32 min for 'fast-acting' CSCs.Conclusions: This study suggests that adding one or two CSCs in the north of the Netherlands would have modest impact. Improving workflow efficiencies seems to be more potent when aiming to improve existing acute stroke care systems

    Simulation modelling to study the impact of adding comprehensive stroke centres. Can we deliver endovascular thrombectomy sooner?

    Get PDF
    Objectives: Regional accessibility and distribution of endovascular thrombectomy (EVT) capable facilities, that is, comprehensive stroke centres (CSCs), may significantly influence time to treatment. We analysed the impact of adding CSCs in the north of the Netherlands, a region with roughly 1.7 million inhabitants currently served by one CSC and eight primary stroke centres (PSCs).Design: Monte Carlo simulation modelling was used to establish new CSCs in our region by hypothetically upgrading existing PSCs to CSCs and ensuing adjustments in health services set-up.Setting: One CSC and eight PSCs in the north of the Netherlands.Participants: 165 patients with acute stroke treated with EVT and underwent interhospital transfer between PSC and CSC (drip and ship patients).Primary and secondary outcomes: Time from onset to groin (OTG) puncture and predicted probability of favourable outcome (modified Rankin Scale 0-2) after 90 days. Sensitivity analyses were performed to assess uncertainty in workflow efficiency of CSCs.Results: Adding one or two CSCs would reduce the OTG time up to approximately 17 min and increases the predicted probability of favourable outcome by approximately 2%. Sensitivity analyses revealed that 'slow-acting' CSCs may reduce OTG by 3-5 min compared with 24-32 min for 'fast-acting' CSCs.Conclusions: This study suggests that adding one or two CSCs in the north of the Netherlands would have modest impact. Improving workflow efficiencies seems to be more potent when aiming to improve existing acute stroke care systems

    Recent Change—North Sea

    Get PDF
    This chapter discusses past and ongoing change in the following physical variables within the North Sea: temperature, salinity and stratification; currents and circulation; mean sea level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients; oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a particular focus on nutrients and sediments. This chapter covers the past 200 years and focuses on the historical development of evidence (measurements, process understanding and models), the form, duration and accuracy of the evidence available, and what the evidence shows in terms of the state and trends in the respective variables. Much work has focused on detecting long-term change in the North Sea region, either from measurements or with models. Attempts to attribute such changes to, for example, anthropogenic forcing are still missing for the North Sea. Studies are urgently needed to assess consistency between observed changes and current expectations, in order to increase the level of confidence in projections of expected future conditions
    • …
    corecore