5 research outputs found

    Overexpression of the oncostatin-M receptor in cervical squamous cell carcinoma is associated with epithelial-mesenchymal transition and poor overall survival.

    Get PDF
    BACKGROUND: Copy-number gain of the oncostatin-M receptor (OSMR) occurs frequently in cervical squamous cell carcinoma (SCC) and is associated with adverse clinical outcome. We previously showed that OSMR overexpression renders cervical SCC cells more sensitive to the major ligand oncostatin-M (OSM), which increases migration and invasion in vitro. We hypothesised that a major contribution to this phenotype would come from epithelial-mesenchymal transition (EMT). METHODS: We performed a comprehensive integrated study, involving in vitro cell line studies, in vivo animal models and numerous clinical samples from a variety of anatomical sites. RESULTS: In independent sets of cervical, head/neck and lung SCC tissues, OSMR expression levels correlated with multiple EMT-associated phenotypic markers and transcription factors. OSM treatment of OSMR overexpressing cervical SCC cells produced consistent EMT changes and increased tumour sphere formation in suspension culture. In a mouse model, OSMR overexpressing SCC cells treated with OSM showed significant increases in lung colonisation. The biological effects of exogenous OSM were mirrored by highly significant adverse overall survival in cervical SCCs with OSMR overexpression (N=251). CONCLUSIONS: OSM:OSMR interactions are able to induce EMT, increased cancer stem cell-like properties and enhanced lung colonisation in SCC cells. These changes are likely to contribute to the highly significant adverse outcome associated with OSMR overexpression in cervical SCCs.This work was supported by Cancer Research UK (Programme Grant A13080).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group

    Ketogenic diet slows down mitochondrial myopathy progression in mice

    No full text
    Mitochondrial dysfunction is a major cause of neurodegenerative and neuromuscular diseases of adult age and of multisystem disorders of childhood. However, no effective treatment exists for these progressive disorders. Cell culture studies suggested that ketogenic diet (KD), with low glucose and high fat content, could select against cells or mitochondria with mutant mitochondrial DNA (mtDNA), but proper patient trials are still lacking. We studied here the transgenic Deletor mouse, a disease model for progressive late-onset mitochondrial myopathy, accumulating mtDNA deletions during aging and manifesting subtle progressive respiratory chain (RC) deficiency. We found that these mice have widespread lipidomic and metabolite changes, including abnormal plasma phospholipid and free amino acid levels and ketone body production. We treated these mice with pre-symptomatic long-term and post-symptomatic shorter term KD. The effects of the diet for disease progression were followed by morphological, metabolomic and lipidomic tools. We show here that the diet decreased the amount of cytochrome c oxidase negative muscle fibers, a key feature in mitochondrial RC deficiencies, and prevented completely the formation of the mitochondrial ultrastructural abnormalities in the muscle. Furthermore, most of the metabolic and lipidomic changes were cured by the diet to wild-type levels. The diet did not, however, significantly affect the mtDNA quality or quantity, but rather induced mitochondrial biogenesis and restored liver lipid levels. Our results show that mitochondrial myopathy induces widespread metabolic changes, and that KD can slow down progression of the disease in mice. These results suggest that KD may be useful for mitochondrial late-onset myopathies
    corecore