72 research outputs found
Reducing the carbon footprint of diets across socio-demographic groups in Finland: a mathematical optimisation study
Objectives:
To characterise nutritionally adequate, climate-friendly diets that are culturally acceptable across socio-demographic groups. To identify potential equity issues linked to more climate-friendly and nutritionally adequate dietary changes.
Design:
An optimisation model minimises distance from observed diets subject to nutritional, greenhouse gas emissions (GHGE) and food-habit constraints. It is calibrated to socio-demographic groups differentiated by sex, education and income levels using dietary intake data. The environmental coefficients are derived from life cycle analysis and an environmentally extended input–output model.
Setting:
Finland.
Participants:
Adult population.
Results:
Across all population groups, we find large synergies between improvements in nutritional adequacy and reductions in GHGE, set at one-third or half of the current level. Those reductions result mainly from the substitution of meat with cereals, potatoes and roots and the intra-category substitution of foods, such as beef with poultry in the meat category. The simulated more climate-friendly diets are thus flexitarian. Moving towards reduced-impact diets would not create major inadequacies related to protein and fatty acid intakes, but Fe could be an issue for pre-menopausal females. The initial socio-economic gradient in the GHGE of diets is small, and the patterns of adjustments to more climate-friendly diets are similar across socio-demographic groups.
Conclusions:
A one-third reduction in GHGE of diets is achievable through moderate behavioural adjustments, but achieving larger reductions may be difficult. The required changes are similar across socio-demographic groups and do not raise equity issues. A population-wide policy to promote behavioural change for diet sustainability would be appropriate
Body Size at Birth Is Associated with Food and Nutrient Intake in Adulthood
WOS:000309517300090Peer reviewe
Dose-Dependent Associations of Dietary Glycemic Index, Glycemic Load, and Fiber With 3-Year Weight Loss Maintenance and Glycemic Status in a High-Risk Population : A Secondary Analysis of the Diabetes Prevention Study PREVIEW
OBJECTIVE To examine longitudinal and dose-dependent associations of dietary glycemic index (GI), glycemic load (GL), and fiber with body weight and glycemic status during 3-year weight loss maintenance (WLM) in adults at high risk of type 2 diabetes. RESEARCH DESIGN AND METHODS In this secondary analysis we used pooled data from the PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World (PREVIEW) randomized controlled trial, which was designed to test the effects of four diet and physical activity interventions. A total of 1,279 participants with overweight or obesity (age 25-70 years and BMI >= 25 kg . m(-2)) and prediabetes at baseline were included. We used multiadjusted linear mixed models with repeated measurements to assess longitudinal and dose-dependent associations by merging the participants into one group and dividing them into GI, GL, and fiber tertiles, respectively. RESULTS In the available-case analysis, each 10-unit increment in GI was associated with a greater regain of weight (0.46 kg . year(-1); 95% CI 0.23, 0.68; P < 0.001) and increase in HbA(1c). Each 20-unit increment in GL was associated with a greater regain of weight (0.49 kg . year(-1); 0.24, 0.75; P < 0.001) and increase in HbA(1c). The associations of GI and GL with HbA(1c) were independent of weight change. Compared with those in the lowest tertiles, participants in the highest GI and GL tertiles had significantly greater weight regain and increases in HbA(1c). Fiber was inversely associated with increases in waist circumference, but the associations with weight regain and glycemic status did not remain robust in different analyses. CONCLUSIONS Dietary GI and GL were positively associated with weight regain and deteriorating glycemic status. Stronger evidence on the role of fiber is needed.Peer reviewe
Links between gut microbiome composition and fatty liver disease in a large population sample
Fatty liver disease is the most common liver disease in the world. Its connection with the gut microbiome has been known for at least 80 y, but this association remains mostly unstudied in the general population because of underdiagnosis and small sample sizes. To address this knowledge gap, we studied the link between the Fatty Liver Index (FLI), a well-established proxy for fatty liver disease, and gut microbiome composition in a representative, ethnically homogeneous population sample of 6,269 Finnish participants. We based our models on biometric covariates and gut microbiome compositions from shallow metagenome sequencing. Our classification models could discriminate between individuals with a high FLI (>= 60, indicates likely liver steatosis) and low FLI (Clostridia, mostly belonging to orders Lachnospirales and Oscillospirales. Our models were also predictive of the high FLI group in a different Finnish cohort, consisting of 258 participants, with an average AUC of 0.77 and AUPRC of 0.51 (baseline at 0.21). Pathway analysis of representative genomes of the positively FLI-associated taxa in (NCBI) Clostridium subclusters IV and XIVa indicated the presence of, e.g., ethanol fermentation pathways. These results support several findings from smaller case-control studies, such as the role of endogenous ethanol producers in the development of the fatty liver
Associations of healthy food choices with gut microbiota profiles
Diet has a major influence on the human gut microbiota, which has been linked to health and disease. However, epidemiological studies on associations of a healthy diet with the microbiota utilizing a whole-diet approach are still scant.ObjectivesTo assess associations between healthy food choices and human gut microbiota composition, and to determine the strength of association with functional potential.MethodsThis population-based study sample consisted of 4930 participants (ages 25–74; 53% women) in the FINRISK 2002 study. Intakes of recommended foods were assessed using a food propensity questionnaire, and responses were transformed into healthy food choices (HFC) scores. Microbial diversity (alpha diversity) and compositional differences (beta diversity) and their associations with the HFC score and its components were assessed using linear regression. Multiple permutational multivariate ANOVAs were run from whole-metagenome shallow shotgun–sequenced samples. Associations between specific taxa and HFC were analyzed using linear regression. Functional associations were derived from Kyoto Encyclopedia of Genes and Genomes orthologies with linear regression models.ResultsBoth microbial alpha diversity (β/SD, 0.044; SE, 6.18 × 10−5; P = 2.21 × 10−3) and beta diversity (R2, 0.12; P ≤ 1.00 × 10−3) were associated with the HFC score. For alpha diversity, the strongest associations were observed for fiber-rich breads, poultry, fruits, and low-fat cheeses (all positive). For beta diversity, the most prominent associations were observed for vegetables, followed by berries and fruits. Genera with fiber-degrading and SCFA-producing capacities were positively associated with the HFC score. The HFC score was associated positively with functions such as SCFA metabolism and synthesis, and inversely with functions such as fatty acid biosynthesis and the sulfur relay system.ConclusionsOur results from a large, population-based survey confirm and extend findings of other, smaller-scale studies that plant- and fiber-rich dietary choices are associated with a more diverse and compositionally distinct microbiota, and with a greater potential to produce SCFAs.</p
- …