12 research outputs found

    Functional polymorphisms of macrophage migration inhibitory factor as predictors of morbidity and mortality of pneumococcal meningitis.

    Get PDF
    Pneumococcal meningitis is the most frequent and critical type of bacterial meningitis. Because cytokines play an important role in the pathogenesis of bacterial meningitis, we examined whether functional polymorphisms of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) were associated with morbidity and mortality of pneumococcal meningitis. Two functional MIF promoter polymorphisms, a microsatellite (-794 CATT5-8; rs5844572) and a single-nucleotide polymorphism (-173 G/C; rs755622) were genotyped in a prospective, nationwide cohort of 405 patients with pneumococcal meningitis and in 329 controls matched for age, gender, and ethnicity. Carriages of the CATT7 and -173 C high-expression MIF alleles were associated with unfavorable outcome (P= 0.005 and 0.003) and death (P= 0.03 and 0.01). In a multivariate logistic regression model, shock [odds ratio (OR) 26.0, P= 0.02] and carriage of the CATT7 allele (OR 5.12,P= 0.04) were the main predictors of mortality. MIF levels in the cerebrospinal fluid were associated with systemic complications and death (P= 0.0002). Streptococcus pneumoniae strongly up-regulated MIF production in whole blood and transcription activity of high-expression MIF promoter Luciferase reporter constructs in THP-1 monocytes. Consistent with these findings, treatment with anti-MIF immunoglogulin G (IgG) antibodies reduced bacterial loads and improved survival in a mouse model of pneumococcal pneumonia and sepsis. The present study provides strong evidence that carriage of high-expression MIF alleles is a genetic marker of morbidity and mortality of pneumococcal meningitis and also suggests a potential role for MIF as a target of immune-modulating adjunctive therapy

    Thrombin-activatable fibrinolysis inhibitor and bacterial infections

    Get PDF
    Mercedes Valls Ser贸n onderzocht een onderdeel van het fibrinolytische systeem dat verantwoordelijk is voor het oplossen van bloedstolsels. Ze keek naar de wisselwerking tussen de zogenaamde trombine-activeerbare fibrinolyse inhibitors - of TAFI - en bacteri毛n. De binding van TAFI aan een specifieke bacterie, Streptococcus pyogenes, werd door haar gekarakteriseerd. Ook onderzocht Valls S茅ron hoe deze interactie de uitkomst van infectie met de bacterie be茂nvloedt

    Thrombin-activatable fibrinolysis inhibitor is degraded by Salmonella enterica and Yersinia pestis

    No full text
    Background: Pathogenic bacteria modulate the host coagulation system to evade immune responses or to facilitate dissemination through extravascular tissues. In particular, the important bacterial pathogens Salmonella enterica and Yersinia pestis intervene with the plasminogen/fibrinolytic system. Thrombin-activatable fibrinolysis inhibitor (TAFI) has anti-fibrinolytic properties as the active enzyme (TAFIa) removes C-terminal lysine residues from fibrin, thereby attenuating accelerated plasmin formation. Results: Here, we demonstrate inactivation and cleavage of TAFI by homologous surface proteases, the omptins Pla of Y. pestis and PgtE of S. enterica. We show that omptin-expressing bacteria decrease TAFI activatability by thrombin-thrombomodulin and that the anti-fibrinolytic potential of TAFIa was reduced by recombinant Escherichia coli expressing Pla or PgtE. The functional impairment resulted from C-terminal cleavage of TAFI by the omptins. Conclusions: Our results indicate that TAFI is degraded directly by the omptins PgtE of S. enterica and Pla of Y. pestis. This may contribute to the ability of PgtE and Pla to damage tissue barriers, such as fibrin, and thereby to enhance spread of S. enterica and Y. pestis during infectio

    Induction of Auto-Antibodies Against 尾(2) -Glycoprotein I in Mice by Protein H of Streptococcus Pyogenes.

    No full text
    Background: The antiphospholipid syndrome (APS) is characterized by the persistent presence of auto-antibodies against 尾(2) -Glycoprotein I (尾(2) -GPI). 尾(2) -GPI can exist in two conformations. In plasma it is a circular protein, whereas it adopts a fish-hook shape after binding to phospholipids. Only the latter conformation is recognized by patient antibodies. 尾(2) -GPI has been shown to interact with Streptococcus pyogenes. Objective: Here we evaluated the potential of S. pyogenes derived proteins to induce auto-antibodies against 尾(2) -GPI. Methods and results: Four S. pyogenes surface proteins (M1 protein, protein H, SclA and SclB) were found to interact with 尾(2) -GPI. Only binding to protein H induces a conformational change in 尾(2) -GPI, thereby exposing a cryptic epitope for APS-related auto-antibodies. Mice were injected with the four proteins. Only mice injected with protein H developed antibodies against the patient antibody related epitope in domain I of 尾(2) -GPI. Patients with pharyngotonsillitis caused by S. pyogenes who developed antibodies towards protein H also generated anti-尾(2) -GPI antibodies. Conclusion: Our study demonstrated that a bacterial protein can induce a conformational change in 尾(2) -GPI resulting in the formation of auto-antibodies against 尾(2) -GPI. This constitutes a novel mechanism for the formation of auto-antibodies against 尾(2) -GPI

    Thrombin-activatable fibrinolysis inhibitor influences disease severity in humans and mice with pneumococcal meningitis

    No full text
    Background Mortality and morbidity in patients with bacterial meningitis result from the proinflammatory response and dysregulation of coagulation and fibrinolysis. Thrombin-activatable fibrinolysis inhibitor (TAFI) is activated by free thrombin or thrombin in complex with thrombomodulin, and plays an antifibrinolytic role during fibrin clot degradation, but also has an anti-inflammatory role by inactivating proinflammatory mediators, such as complement activation products. Objective To assess the role of TAFI in pneumococcal meningitis. Methods We performed a prospective nationwide genetic association study in patients with bacterial meningitis, determined TAFI and complement levels in cerebrospinal fluid (CSF), and assessed the function of TAFI in a pneumococcal meningitis mouse model by using Cpb2 (TAFI) knockout mice. Results Polymorphisms (reference sequences: rs1926447 and rs3742264) in the CPB2 gene, coding for TAFI, were related to the development of systemic complications in patients with pneumococcal meningitis. Higher protein levels of TAFI in CSF were significantly associated with CSF complement levels (C3a, iC3b, and C5b-9) and with more systemic complications in patients with bacterial meningitis. The risk allele of rs1926447 (TT) was associated with higher levels of TAFI in CSF. In the murine model, consistent with the human data, Cpb2-deficient mice had decreased disease severity, as reflected by lower mortality, and attenuated cytokine levels and bacterial outgrowth in the systemic compartment during disease, without differences in the brain compartment, as compared with wild-type mice. Conclusions These findings suggest that TAFI plays an important role during pneumococcal meningitis, which is likely to be mediated through inhibition of the complement system, and influences the occurrence of systemic complications and inflammation

    Microglial Activation After Systemic Stimulation With Lipopolysaccharide and Escherichia coli

    No full text
    Background: Microglial activation after systemic infection has been suggested to mediate sepsis-associated delirium. A systematic review of animal studies suggested distinct differences between microglial activation after systemic challenge with live bacteria and lipopolysaccharide (LPS). Here, we describe a mouse model of microglial activation after systemic challenge with live Escherichia coli (E. coli) and compare results with systemic challenge with LPS.Methods: Sixty mice were intraperitoneally injected with E. coli (1 脳 104 colony-forming units) and sacrificed at 12, 20, 48, and 72 h after inoculation. For 48 and 72 h time points, mice were treated with ceftriaxone. Thirty mice were intraperitoneally injected with LPS (5 mg/kg) and sacrificed 3 and 48 h after inoculation; 48 control mice were intraperitoneally injected with isotonic saline. Microglial response was monitored by immunohistochemical staining with Iba-1 antibody and flow cytometry; and inflammatory response by mRNA expression of pro- and anti-inflammatory mediators.Results: Mice infected with live E. coli showed microglial activation 72 h post-inoculation, with increased cell number in cortex (p = 0.0002), hippocampus (p = 0.003), and thalamus (p = 0.0001), but not in the caudate nucleus/putamen (p = 0.33), as compared to controls. At 72 h, flow cytometry of microglia from E. coli infected mice showed increased cell size (p = 0.03) and CD45 expression (p = 0.03), but no increase in CD11b expression, and no differences in brain mRNA expression of inflammatory mediators as compared to controls. In mice with systemic LPS stimulation, microglial cells were morphologically activated at the 48 h time point with increased cell numbers in cortex (p = 0.002), hippocampus (p = 0.0003), thalamus (p = 0.007), and caudate nucleus/putamen (p < 0.0001), as compared to controls. At 48 h, flow cytometry of microglia from LPS stimulated mice showed increased cell size (p = 0.03), CD45 (p = 0.03), and CD11b (p = 0.04) expression. Brain mRNA expression of TNF-伪 (p = 0.02), IL-1尾 (p = 0.02), and MCP-1 (p = 0.03) were increased as compared to controls.Interpretation: Systemic challenge with live E. coli causes a neuro-inflammatory response, but this response occurs at a later time point and is less vigorous as compared to LPS stimulation.The E. coli model mimics the clinical situation of infection associated delirium more closely than stimulation with supra-natural LPS

    Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis

    No full text
    Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines

    Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis

    No full text
    Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines
    corecore