65 research outputs found

    Evaluating the specificity of community injury hospitalization data over time

    Get PDF
    This study identified the areas of poor specificity in national injury hospitalization data and the areas of improvement and deterioration in specificity over time. A descriptive analysis of ten years of national hospital discharge data for Australia from July 2002-June 2012 was performed. Proportions and percentage change of defined/undefined codes over time was examined. At the intent block level, accidents and assault were the most poorly defined with over 11% undefined in each block. The mechanism blocks for accidents showed a significant deterioration in specificity over time with up to 20% more undefined codes in some mechanisms. Place and activity were poorly defined at the broad block level (43% and 72% undefined respectively). Private hospitals and hospitals in very remote locations recorded the highest proportion of undefined codes. Those aged over 60 years and females had the higher proportion of undefined code usage. This study has identified significant, and worsening, deficiencies in the specificity of coded injury data in several areas. Focal attention is needed to improve the quality of injury data, especially on those identified in this study, to provide the evidence base needed to address the significant burden of injury in the Australian community

    Communicating consequences with costs: a commentary on Corso et al's cost of injury

    Get PDF
    Estimating the economic burden of injuries is important for setting priorities, allocating scarce health resources and planning cost-effective prevention activities. As a metric of burden, costs account for multiple injury consequences—death, severity, disability, body region, nature of injury—in a single unit of measurement. In a 1989 landmark report to the US Congress, Rice et al1 estimated the lifetime costs of injuries in the USA in 1985. By 2000, the epidemiology and burden of injuries had changed enough that the US Congress mandated an update, resulting in a book on the incidence and economic burden of injury in the USA.2 To make these findings more accessible to the larger realm of scientists and practitioners and to provide a template for conducting the same economic burden analyses in other countries and settings, a summary3 was published in Injury Prevention. Corso et al reported that, between 1985 and 2000, injury rates declined roughly 15%. The estimated lifetime cost of these injuries declined 20%, totalling US406billion,includingUS406 billion, including US80 billion in medical costs and US$326 billion in lost productivity. While incidence reflects problem size, the relative burden of injury is better expressed using costs

    Artificial intelligence or manufactured stupidity? The need for injury informaticians in the big data era

    No full text
    The volume, velocity and variety of data collected about individuals have increased exponentially over the last decade, presenting new injury surveillance opportunities to identify risk factors, monitor trends, and evaluate the efficacy of interventions. But does the hype around big data and artificial intelligence (AI) apply to the injury prevention space, and how veracious is surveillance in this era? This commentary discusses the digital transformation of health as applied to injury prevention, but cautions on the challenges of maintaining data quality in integrated systems and discusses the need for an injury informatics strategy moving forward

    Machine learning approaches to analysing textual injury surveillance data: A systematic review

    No full text
    Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field

    Injury narrative text classification using factorization model

    Get PDF
    Narrative text is a useful way of identifying injury circumstances from the routine emergency department data collections. Automatically classifying narratives based on machine learning techniques is a promising technique, which can consequently reduce the tedious manual classification process. Existing works focus on using Naive Bayes which does not always offer the best performance. This paper proposes the Matrix Factorization approaches along with a learning enhancement process for this task. The results are compared with the performance of various other classification approaches. The impact on the classification results from the parameters setting during the classification of a medical text dataset is discussed. With the selection of right dimension k, Non Negative Matrix Factorization-model method achieves 10 CV accuracy of 0.93

    Utilising hospital data to inform product safety prioritisation : the application of RAPEX severity rankings in ICD-coded Burn Data

    Get PDF
    Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response

    How serious are they? The use of data linkage to explore different definitions of serious road crash injuries

    Get PDF
    Over recent years, the focus in road safety has shifted towards a greater understanding of road crash serious injuries in addition to fatalities. Police reported crash data are often the primary source of crash information; however, the definition of serious injury within these data is not consistent across jurisdictions and may not be accurately operationalised. This study examined the linkage of police-reported road crash data with hospital data to explore the potential for linked data to enhance the quantification of serious injury. Data from the Queensland Road Crash Database (QRCD), the Queensland Hospital Admitted Patients Data Collection (QHAPDC), Emergency Department Information System (EDIS), and the Queensland Injury Surveillance Unit (QISU) for the year 2009 were linked. Nine different estimates of serious road crash injury were produced. Results showed that there was a large amount of variation in the estimates of the number and profile of serious road crash injuries depending on the definition or measure used. The results also showed that as the definition of serious injury becomes more precise the vulnerable road users become more prominent. These results have major implications in terms of how serious injuries are identified for reporting purposes. Depending on the definitions used, the calculation of cost and understanding of the impact of serious injuries would vary greatly. This study has shown how data linkage can be used to investigate issues of data quality. It has also demonstrated the potential improvements to the understanding of the road safety problem, particularly serious injury, by conducting data linkage

    A needle in a haystack: The use of routinely collected emergency department injury surveillance data to help identify physical child abuse

    Get PDF
    A retrospective, descriptive analysis of a sample of children under 18 years presenting to a hospital emergency department (ED) for treatment of an injury was conducted. The aim was to explore characteristics and identify differences between children assigned abuse codes and children assigned unintentional injury codes using an injury surveillance database. Only 0.1% of children had been assigned the abuse code and 3.9% a code indicating possible abuse. Children between 2-5 years formed the largest proportion of those coded to abuse. Superficial injury and bruising were the most common types of injury seen in children in the abuse group and the possible abuse group (26.9% and 18.8% respectively), whereas those with unintentional injury were most likely to present with open wounds (18.4%). This study demonstrates that routinely collected injury surveillance data can be a useful source of information for describing injury characteristics in children assigned abuse codes compared to those assigned no abuse codes
    • …
    corecore