18,698 research outputs found

    Large lepton mixing and supernova 1987A

    Get PDF
    We reconsider the impact of νˉeνˉμ,τ\bar\nu_e \leftrightarrow \bar\nu_{\mu,\tau} neutrino oscillations on the observed νˉe\bar\nu_e signal of supernova SN 1987A. Performing a maximum-likelihood analysis using as fit parameters the released binding energy \Eb and the average neutrino energy \Ee, we find as previous analyses that νˉeνˉμ,τ\bar\nu_e \leftrightarrow \bar\nu_{\mu,\tau} oscillations with large mixing angles have lower best-fit values for \Ee than small-mixing angle (SMA) oscillations. Moreover, the inferred value of \Ee is already in the SMA case lower than those found in simulations. This apparent conflict has been interpreted as evidence against the large mixing oscillation solutions to the solar neutrino problem. In order to quantify the degree to which the experimental data favour the SMA over the large mixing solutions we use their likelihood ratios as well as a Kolmogorov-Smirnov test. We find within the range of SN parameters predicted by simulations regions in which the LMA-MSW solution is either only marginally disfavoured or favoured compared to the SMA-MSW solution. We conclude therefore that the LMA-MSW solution is not in conflict with the current understanding of SN physics. In contrast, the vacuum oscillation and the LOW solutions to the solar neutrino problem can be excluded at the 4σ4\sigma level for most of the SN parameter ranges found in simulations. Only a marginal region with low values of \Ee, and \Eb is left over, in which these oscillation solutions can be reconciled with the neutrino signal of SN 1987A.Comment: 23 pages, 20 figures, v2: brief comments adde

    Decaying warm dark matter and neutrino masses

    Get PDF
    Neutrino masses may arise from spontaneous breaking of ungauged lepton number. Due to quantum gravity effects the associated Goldstone boson - the majoron - will pick up a mass. We determine the lifetime and mass required by cosmic microwave background observations so that the massive majoron provides the observed dark matter of the Universe. The majoron DDM scenario fits nicely in models where neutrino masses arise a la seesaw, and may lead to other possible cosmological implications.Comment: 4 pages, 3 figures. Replaced to match published version. Minor changes made to address referees' comments. References adde

    Modelling tri-bimaximal neutrino mixing

    Get PDF
    We model tri-bimaximal lepton mixing from first principles in a way that avoids the problem of the vacuum alignment characteristic of such models. This is achieved by using a softly broken A4 symmetry realized with an isotriplet fermion, also triplet under A4. No scalar A4-triplet is introduced. This represents one possible realization of general schemes characterized by the minimal set of either three or five physical parameters. In the three parameter versions mee vanishes, while in the five parameter schemes the absolute scale of neutrino mass, although not predicted, is related to the two Majorana phases. The model realization we discuss is potentially testable at the LHC through the peculiar leptonic decay patterns of the fermionic and scalar triplets.Comment: some changing, reference adde

    The Effects of Inlet Flow Modification on Cavitating Inducer Performance

    Get PDF
    This paper explores the effect of inlet flow modification on the cavitating and noncavitating performance of two cavitating inducers, one of simple helical design and the other a model of the low-pressure LOX pump in the Space Shuttle Main Engine. The modifications were generated by sections of honeycomb, both uniform and nonuniform. Significant improvement in the performance over a wide range of flow coefficients resulted from the use of either honeycomb section. Measurements of the axial and swirl velocity profiles of the flows entering the inducers were made in order to try to understand the nature of the inlet flow and the manner in which it is modified by the honeycomb sections

    Thermal leptogenesis in extended supersymmetric seesaw

    Get PDF
    We consider an extended supersymmetric SO(10) seesaw model with only doublet Higgs scalars, in which neutrino masses are suppressed by the scale of D-parity violation. Leptogenesis can occur at the TeV scale through the decay of a singlet Sigma, thereby avoiding the gravitino crisis. Washout of the asymmetry can be effectively suppressed by the absence of direct couplings of Sigma to leptons.Comment: 4 pages, 5 figure

    Global status of neutrino oscillation parameters after Neutrino-2012

    Get PDF
    Here we update the global fit of neutrino oscillations in arXiv:1103.0734 and arXiv:1108.1376 including the recent measurements of reactor antineutrino disappearance reported by the Double Chooz, Daya Bay and RENO experiments, together with latest MINOS and T2K appearance and disappearance results, as presented at the Neutrino-2012 conference. We find that the preferred global fit value of θ13\theta_{13} is quite large: sin2θ130.025\sin^2\theta_{13} \simeq 0.025 for normal and inverted neutrino mass ordering, with θ13=0\theta_{13} = 0 now excluded at more than 10σ\sigma. The impact of the new θ13\theta_{13} measurements over the other neutrino oscillation parameters is discussed as well as the role of the new long-baseline neutrino data and the atmospheric neutrino analysis in the determination of a non-maximal atmospheric angle θ23\theta_{23}.Comment: Note added, matches published version in Physical Review

    Neutrino oscillations refitted

    Get PDF
    Here we update our previous global fit of neutrino oscillations by including the recent results which have appeared since the Neutrino-2012 conference. These include the measurements of reactor anti-neutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23\theta_{23} is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with emphasis on the increasing sensitivity to the CP phase, thanks to the interplay between accelerator and reactor data. In the appendix we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.Comment: 13 pages, 5 figures, 2 tables. An appendix providing updated results after Neutrino-2014 Conference is added. Matches published version in Physical Review

    Novel Supersymmetric SO(10) Seesaw Mechanism

    Get PDF
    We propose a new seesaw mechanism for neutrino masses within a class of supersymmetric SO(10) models with broken D-parity. It is shown that in such scenarios the B-L scale can be as low as TeV without generating inconsistencies with gauge coupling unification nor with the required magnitude of the light neutrino masses. This leads to a possibly light new neutral gauge boson as well as relatively light quasi-Dirac heavy leptons. These particles could be at the TeV scale and mediate lepton flavour and CP violating processes at appreciable levels.Comment: 4 pages, 3 figures, revtex4, references added, typos corrected, sharper discussion of the RGEs give
    corecore