625 research outputs found

    An overview of ensemble and feature learning in few-shot image classification using siamese networks

    Get PDF
    Siamese Neural Networks (SNNs) constitute one of the most representative approaches for addressing Few-Shot Image Classification. These schemes comprise a set of Convolutional Neural Network (CNN) models whose weights are shared across the network, which results in fewer parameters to train and less tendency to overfit. This fact eventually leads to better convergence capabilities than standard neural models when considering scarce amounts of data. Based on a contrastive principle, the SNN scheme jointly trains these inner CNN models to map the input image data to an embedded representation that may be later exploited for the recognition process. However, in spite of their extensive use in the related literature, the representation capabilities of SNN schemes have neither been thoroughly assessed nor combined with other strategies for boosting their classification performance. Within this context, this work experimentally studies the capabilities of SNN architectures for obtaining a suitable embedded representation in scenarios with a severe data scarcity, assesses the use of train data augmentation for improving the feature learning process, introduces the use of transfer learning techniques for further exploiting the embedded representations obtained by the model, and uses test data augmentation for boosting the performance capabilities of the SNN scheme by mimicking an ensemble learning process. The results obtained with different image corpora report that the combination of the commented techniques achieves classification rates ranging from 69% to 78% with just 5 to 20 prototypes per class whereas the CNN baseline considered is unable to converge. Furthermore, upon the convergence of the baseline model with the sufficient amount of data, still the adequate use of the studied techniques improves the accuracy in figures from 4% to 9%.First author is supported by the “Programa I+D+i de la Generalitat Valenciana” through grant APOSTD/2020/256. This research work was partially funded by the Spanish “Ministerio de Ciencia e Innovación” and the European Union “NextGenerationEU/PRTR” programmes through project DOREMI (TED2021-132103A-I00). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature

    Multilabel Prototype Generation for Data Reduction in k-Nearest Neighbour classification

    Get PDF
    Prototype Generation (PG) methods are typically considered for improving the efficiency of the kk-Nearest Neighbour (kkNN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced version of the corpus without decreasing the classification performance when compared to the initial set. Despite their large application in multiclass scenarios, very few works have addressed the proposal of PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel kkNN-based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise scenarios artificially induced in the data. The results obtained show that the proposed adaptations are capable of significantly improving -- both in terms of efficiency and classification performance -- the only reference multilabel PG work in the literature as well as the case in which no PG method is applied, also presenting a statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow prioritising either the efficiency or efficacy criteria through its configuration depending on the target scenario, hence covering a wide area in the solution space not previously filled by other works

    Multilabel Prototype Generation for data reduction in K-Nearest Neighbour classification

    Get PDF
    Prototype Generation (PG) methods are typically considered for improving the efficiency of the k-Nearest Neighbour (kNN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced version of the corpus without decreasing the classification performance when compared to the initial set. Despite their large application in multiclass scenarios, very few works have addressed the proposal of PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel kNN-based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise scenarios artificially induced in the data. The results obtained show that the proposed adaptations are capable of significantly improving—both in terms of efficiency and classification performance—the only reference multilabel PG work in the literature as well as the case in which no PG method is applied, also presenting statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow prioritising either the efficiency or efficacy criteria through its configuration depending on the target scenario, hence covering a wide area in the solution space not previously filled by other works.This research was partially funded by the Spanish Ministerio de Ciencia e Innovación through the MultiScore (PID2020-118447RA-I00) and DOREMI (TED2021-132103A-I00) projects. The first author is supported by grant APOSTD/2020/256 from “Programa I+D+i de la Generalitat Valenciana”

    Statistical semi-supervised system for grading multiple peer-reviewed open-ended works

    Get PDF
    In the education context, open-ended works generally entail a series of benefits as the possibility of develop original ideas and a more productive learning process to the student rather than closed-answer activities. Nevertheless, such works suppose a significant correction workload to the teacher in contrast to the latter ones that can be self-corrected. Furthermore, such workload turns to be intractable with large groups of students. In order to maintain the advantages of open-ended works with a reasonable amount of correction effort, this article proposes a novel methodology: students perform the corrections using a rubric (closed Likert scale) as a guideline in a peer-review fashion; then, their markings are automatically analyzed with statistical tools to detect possible biased scorings; finally, in the event the statistical analysis detects a biased case, the teacher is required to intervene to manually correct the assignment. This methodology has been tested on two different assignments with two heterogeneous groups of people to assess the robustness and reliability of the proposal. As a result, we obtain values over 95% in the confidence of the intra-class correlation test (ICC) between the grades computed by our proposal and those directly resulting from the manual correction of the teacher. These figures confirm that the evaluation obtained with the proposed methodology is statistically similar to that of the manual correction of the teacher with a remarkable decrease in terms of effort.This work has been supported by the Vicerrectorado de Calidad e InnovaciĂłn Educativa-Instituto de Ciencias de la EducaciĂłn of the Universidad de Alicante (2016-17 edition) through the Programa de Redes-I3CE de investigaciĂłn en docencia universitaria (ref. 3690)

    Kurcuma: a kitchen utensil recognition collection for unsupervised domain adaptation

    Get PDF
    The use of deep learning makes it possible to achieve extraordinary results in all kinds of tasks related to computer vision. However, this performance is strongly related to the availability of training data and its relationship with the distribution in the eventual application scenario. This question is of vital importance in areas such as robotics, where the targeted environment data are barely available in advance. In this context, domain adaptation (DA) techniques are especially important to building models that deal with new data for which the corresponding label is not available. To promote further research in DA techniques applied to robotics, this work presents Kurcuma (Kitchen Utensil Recognition Collection for Unsupervised doMain Adaptation), an assortment of seven datasets for the classification of kitchen utensils—a task of relevance in home-assistance robotics and a suitable showcase for DA. Along with the data, we provide a broad description of the main characteristics of the dataset, as well as a baseline using the well-known domain-adversarial training of neural networks approach. The results show the challenge posed by DA on these types of tasks, pointing to the need for new approaches in future work.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the I+D+i project TED2021-132103A-I00 (DOREMI), funded by MCIN/AEI/10.13039/501100011033. Some of the computing resources were provided by the Generalitat Valenciana and the European Union through the FEDER funding program (IDIFEDER/2020/003). The second author is supported by grant APOSTD/2020/256 from “Programa I+D+i de la Generalitat Valenciana”

    Identifying Student Profiles Within Online Judge Systems Using Explainable Artificial Intelligence

    Get PDF
    Online Judge (OJ) systems are typically considered within programming-related courses as they yield fast and objective assessments of the code developed by the students. Such an evaluation generally provides a single decision based on a rubric, most commonly whether the submission successfully accomplished the assignment. Nevertheless, since in an educational context such information may be deemed insufficient, it would be beneficial for both the student and the instructor to receive additional feedback about the overall development of the task. This work aims to tackle this limitation by considering the further exploitation of the information gathered by the OJ and automatically inferring feedback for both the student and the instructor. More precisely, we consider the use of learning-based schemes—particularly, Multi-Instance Learning and classical Machine Learning formulations—to model student behaviour. Besides, Explainable Artificial Intelligence is contemplated to provide human-understandable feedback. The proposal has been evaluated considering a case of study comprising 2,500 submissions from roughly 90 different students from a programming-related course in a Computer Science degree. The results obtained validate the proposal: the model is capable of significantly predicting the user outcome (either passing or failing the assignment) solely based on the behavioural pattern inferred by the submissions provided to the OJ. Moreover, the proposal is able to identify prone-to-fail student groups and profiles as well as other relevant information, which eventually serves as feedback to both the student and the instructor.This work has been partially funded by the “Programa Redes-I3CE de investigacion en docencia universitaria del Instituto de Ciencias de la Educacion (REDES-I3CE-2020-5069)” of the University of Alicante. The third author is supported by grant APOSTD/2020/256 from “Programa I+D+I de la Generalitat Valenciana”

    Clustering-based k-nearest neighbor classification for large-scale data with neural codes representation

    Get PDF
    While standing as one of the most widely considered and successful supervised classification algorithms, the k-nearest Neighbor (kNN) classifier generally depicts a poor efficiency due to being an instance-based method. In this sense, Approximated Similarity Search (ASS) stands as a possible alternative to improve those efficiency issues at the expense of typically lowering the performance of the classifier. In this paper we take as initial point an ASS strategy based on clustering. We then improve its performance by solving issues related to instances located close to the cluster boundaries by enlarging their size and considering the use of Deep Neural Networks for learning a suitable representation for the classification task at issue. Results using a collection of eight different datasets show that the combined use of these two strategies entails a significant improvement in the accuracy performance, with a considerable reduction in the number of distances needed to classify a sample in comparison to the basic kNN rule.This work has been supported by the Spanish Ministerio de Economía y Competitividad through Project TIMuL (No. TIN2013-48152-C2-1-R supported by EU FEDER funds), the Spanish Ministerio de Educación, Cultura y Deporte through an FPU Fellowship (Ref. AP2012–0939), and by the Universidad de Alicante through the FPU program (UAFPU2014–5883 ) and the Instituto Universitario de Investigación Informática (IUII)

    Evaluation of an autonomous smart system for optimal management of fertigation with variable sources of irrigation water

    Get PDF
    Modern irrigation technologies and tools can help boost fertigation efficiency and sustainability, particularly when using irrigation water of varying quality. In this study, a high-tech irrigation head using a new fertigation optimization tool called NutriBalance, which is designed to manage feed waters of different qualities, has been evaluated from technical and economic perspectives. NutriBalance computes the optimal fertigation dose based on specific data about the equipment, the crop, the irrigation water, and the fertilizers available, in order to enable autonomous and accurate water and fertilizer supply. The system was trialed in a grapefruit orchard irrigated with fresh and desalinated water for several values of crop nutritional requirements and considering different fertilizer price scenarios. The results showed the good interoperability between the tool and the irrigation head and the nearly flawless ability (error below 7% for most ions) of the system to provide the prescribed fertigation with different combinations of irrigation water. Fertilizer savings of up to 40% were achieved, which, for the lifespan of the equipment, were estimated to correspond to around 500 EUR/ha/year. The results of this study can encourage the adoption of novel technologies and tools by farmers

    Genetic Association between ACE2 (rs2285666 and rs2074192) and TMPRSS2 (rs12329760 and rs2070788) Polymorphisms with Post-COVID Symptoms in Previously Hospitalized COVID-19 Survivors

    Get PDF
    The aim of the study was to identify the association between four selected COVID-19 polymorphisms of ACE2 and TMPRSS2 receptors genes with the presence of long-COVID symptomatology in COVID-19 survivors. These genes were selected as they associate with the entry of the SARS-CoV-2 virus into the cells, so polymorphisms could be important for the prognoses of long-COVID symptoms. Two hundred and ninety-three (n = 293, 49.5% female, mean age: 55.6 ± 12.9 years) individuals who had been previously hospitalized due to COVID-19 were included. Three potential genotypes of the following single nucleotide polymorphisms (SNPs) were obtained from non-stimulated saliva samples of participants: ACE2 (rs2285666), ACE2 (rs2074192), TMPRSS2 (rs12329760), TMPRSS2 (rs2070788). Participants were asked to self-report the presence of any post-COVID defined as a symptom that started no later than one month after SARS-CoV-2 acute infection and whether the symptom persisted at the time of the study. At the time of the study (mean: 17.8, SD: 5.2 months after hospital discharge), 87.7% patients reported at least one symptom. Fatigue (62.8%), pain (39.9%) or memory loss (32.1%) were the most prevalent post-COVID symptoms. Overall, no differences in long-COVID symptoms were dependent on ACE2 rs2285666, ACE2 rs2074192, TMPRSS2 rs12329760, or TMPRSS2 rs2070788 genotypes. The four SNPs assessed, albeit previously associated with COVID-19 severity, do not predispose for developing long-COVID symptoms in people who were previously hospitalized due to COVID-19 during the first wave of the pandemic
    • …
    corecore