215 research outputs found

    Generation and Characterization of a Knock-In Allele of EKLF: Probing the in vivo Role of the Chromatin Remodeling Domain in Definitive Hematopoietic Cells

    Get PDF
    The zinc finger-encoding transacting factor EKLF, or erythroid Krüppel-like factor, binds key regulatory elements of many erythroid-specific genes, and is essential for definitive erythropoiesis. Mice lacking this factor die of anemia by E15.5 of gestation, failing to activate β-globin gene transcription, and demonstrating a block in the erythroid differentiation program at the primitive erythroblast stage. In contrast, megakaryocytic progenitors are amplified in EKLF-null embryos, with increased Fli-1 gene expression, a marker of early megakaryocytic differentiation. These observations are consistent with the idea that EKLF modulates the megakaryocytic-erythroid (M-E) differentiation switch. Our laboratory has previously demonstrated that an amino terminal sequence of EKLF (D221EKLF) is required to induce chromatin remodeling at the β-globin promoter in an EKLF-null erythroid cell line. However, additional amino terminal sequences are required for initiation of β-globin gene transcription. To evaluate the role of this chromatin remodeling domain in erythroid and megakaryocytic differentiation in vivo, I have generated a knock-in allele of D221EKLF. Using the recombineering method, a lambda phage-based homolgous recombination method in E. coli, cDNA encoding theD221EKLF domain has been inserted into the endogenous initiation site, thus placing the mutant protein under the cis-regulatory elements of the endogenous murine EKLF locus. Subsequently, D221EKLF alleles have been generated by gene targeting in ES cells. I have used the mice to probe the in vivo role of D221EKLF in definitive hematopoietic cells. Similar to EKLF-null embryos, mice homozygous for the D221EKLF mutant allele die of anemia by E15.5 of gestation. Molecular analysis ofD221EKLF erythroblasts reveals i) a failure to activate β-globin gene transcription; ii) lack of GATA-1 and NF-E2 recruitment to the β-globin promoter; iii) a block in terminal erythroid differentiation. In contrast to erythroid cells lacking EKLF, D221EKLF erythroid progenitors demonstrate appropriate binding of the D221EKLF encoding domain to all EKLF-regulatory sequences and a chromatin architecture and histone modification pattern at erythroid-specific genes that recapitulate the events observed in wild-type EKLF erythroblasts at a similar stage of erythroid ontogeny. Examining the role of D221EKLF in megakaryopoiesis, I observed inhibition of megakaryocytic progenitor expansion in D221EKLF fetal hematopoietic cell populations when compared to EKLF-null embryos. Molecular analysis of D221EKLF erythroblasts reveals i) binding of theD221EKLF mutant protein to the Fli-1 promoter with inhibition of gene transcription; ii) hypoacetylation of histone H3 at the Fli-1 promoter; iii) recruitment of a Sin3A-containing corepressor complex to the Fli-1 promoter. Taken together, my results suggest strongly that the unique D221EKLF domain is sufficient to modulate the chromatin-specific roles of EKLF at erythroid- and megakaryocytic-specific loci in definitive hematopoietic cells in vivo

    Current Landscape of Targeted Therapies for Hormone-Receptor Positive, HER2 Negative Metastatic Breast Cancer

    Get PDF
    The majority of deaths from MBC are in patients with hormone receptor (HR) positive, HER2 negative disease. Endocrine therapy (ET) remains the backbone of treatment in these cases, improving survival and quality of life. However, treatment can lose effectiveness due to primary or acquired endocrine resistance. Analysis of mechanisms of ET resistance has led to the development of a new generation of targeted therapies for advanced breast cancer. In addition to anti-estrogen therapy with selective estrogen receptor modulators, aromatase inhibitors, and/or selective estrogen receptor degraders, combinations with cyclin dependent kinase (CDK) 4/6 inhibitors have led to substantial progression free survival (PFS) improvements in the first and second line settings. While the PI3K/AKT/mTOR pathway is known to be an important growth pathway in HR positive breast cancer, PI3K inhibitors have been disappointing due to modest effect sizes and significant toxicity. The mTOR inhibitor everolimus significantly improves progression free survival when added to ET, and recent studies have improved supportive care allowing less toxicity. While these combination targeted therapies improve outcomes and often delay initiation of chemotherapy, long term overall survival data are lacking and data for the ideal strategy for sequencing these agents remains unclear. Ongoing research evaluating potential biomarkers and mechanisms of resistance is anticipated to continue to improve outcomes for patients with HR positive metastatic breast cancer. In this review, we will discuss management and ongoing challenges in the treatment of advanced HR positive, HER2 negative breast cancer, highlighting single agent and combination endocrine therapies, targeted therapies including palbociclib, ribociclib, abemaciclib, and everolimus, and sequencing of therapies in the clinic

    Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib

    Get PDF
    Palbociclib is a CDK4/6 inhibitor approved for metastatic estrogen receptor-positive breast cancer. In addition to G1 cell cycle arrest, palbociclib treatment results in cell senescence, a phenotype that is not readily explained by CDK4/6 inhibition. In order to identify a molecular mechanism responsible for palbociclib-induced senescence, we performed thermal proteome profiling of MCF7 breast cancer cells. In addition to affecting known CDK4/6 targets, palbociclib induces a thermal stabilization of the 20S proteasome, despite not directly binding to it. We further show that palbociclib treatment increases proteasome activity independently of the ubiquitin pathway. This leads to cellular senescence, which can be counteracted by proteasome inhibitors. Palbociclib-induced proteasome activation and senescence is mediated by reduced proteasomal association of ECM29. Loss of ECM29 activates the proteasome, blocks cell proliferation, and induces a senescence-like phenotype. Finally, we find that ECM29 mRNA levels are predictive of relapse-free survival in breast cancer patients treated with endocrine therapy. In conclusion, thermal proteome profiling identifies the proteasome and ECM29 protein as mediators of palbociclib activity in breast cancer cells

    Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling

    Get PDF
    Fibrin is the major extracellular component of blood clots and a proteinaceous hydrogel used as a versatile biomaterial. Fibrin forms branched networks built of laterally associated double-stranded protofibrils. This multiscale hierarchical structure is crucial for the extraordinary mechanical resilience of blood clots, yet the structural basis of clot mechanical properties remains largely unclear due, in part, to the unresolved molecular packing of fibrin fibers. Here the packing structure of fibrin fibers is quantitatively assessed by combining Small Angle X-ray Scattering (SAXS) measurements of fibrin reconstituted under a wide range of conditions with computational molecular modeling of fibrin protofibrils. The number, positions, and intensities of the Bragg peaks observed in the SAXS experiments were reproduced computationally based on the all-atom molecular structure of reconstructed fibrin protofibrils. Specifically, the model correctly predicts the intensities of the reflections of the 22.5 nm axial repeat, corresponding to the half-staggered longitudinal arrangement of fibrin molecules. In addition, the SAXS measurements showed that protofibrils within fibrin fibers have a partially ordered lateral arrangement with a characteristic transverse repeat distance of 13 nm, irrespective of the fiber thickness. These findings provide fundamental insights into the molecular structure of fibrin clots that underlies their biological and physical properties. This journal i

    The composition and metabolic potential of the human small intestinal microbiota within the context of inflammatory bowel disease

    Get PDF
    BACKGROUND AND AIMS: The human gastrointestinal tract harbours distinct microbial communities essential for health. Little is known about small intestinal communities, despite the small intestine playing a fundamental role in nutrient absorption and host-microbe immune homeostasis. We aimed to explore the small intestine microbial composition and metabolic potential, in the context of inflammatory bowel disease (IBD). METHODS: Metagenomes derived from faecal samples and extensive phenotypes were collected from 57 individuals with an ileostomy or ileoanal pouch, and compared with 1178 general population and 478 IBD faecal metagenomes. Microbiome features were identified using MetaPhAn2 and HUMAnN2, and association analyses were performed using multivariate linear regression. RESULTS: Small intestinal samples had a significantly lower bacterial diversity, compared with the general population and, to a lesser extent, IBD samples. Comparing bacterial composition, small intestinal samples clustered furthest from general population samples and closest to IBD samples with intestinal resections. Veillonella atypica, Streptococcus salivarius and Actinomyces graevenitzii were among the species significantly enriched in the small intestine. Predicted metabolic pathways in the small intestine are predominantly involved in simple carbohydrate and energy metabolism, but also suggest a higher proinflammatory potential. CONCLUSION: We described the bacterial composition and metabolic potential of the small intestinal microbiota. The colonic microbiome of IBD patients, particularly with intestinal resections, showed resemblance to that of the small intestine. Moreover, several features characterising the small intestinal microbiome have been previously associated with IBD. These results highlight the importance of studying the small intestinal microbiota to gain new insight into disease pathogenesis

    Faecal metabolome and its determinants in inflammatory bowel disease

    Get PDF
    OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD.DESIGN: We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels.RESULTS: We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism.CONCLUSION: In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.</p

    Water Filtration Using Plant Xylem

    Get PDF
    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, inexpensive, biodegradable, and disposable material – can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings

    Concurrent Oral 9 - Rheumatoid Arthritis: Aetiopathogenesis [OP59-OP64]: OP59. The Value of Interleukin-17 Serum Level in Rheumatoid Arthritis Immunopathogenesis

    Get PDF
    Background: Interleukin (IL)-17 is the main Th-1 cytokine, produced by activated T-lymphocytes. The potential IL-17 value in rheumatoid arthritis (RA) pathogenesis consists of its independent inflammatory response induction and mediated stimulation of proinflammatory factors synthesis resulting in joint destruction. The aim of study was to determine the role of IL-17 in immuno-inflammatory/autoimmune reactions development and to reveal IL-17 serum level associations with clinical and immunological characteristics of RA. Methods: 50 patients with early RA (disease duration >, Russia), anti-CCP antibodies (Axies-Shield Diagnostic, UK) were revealed using ELISA immunoassay. Results: On the base of IL-17 serum level patients were divided in two groups: group1 (n = 28) were patients with normal IL-17 serum level and group2 (n = 22) were those with high IL-17 serum level. In the group2, the rate of patients' pain assessment by visual analogue scale (67.3 ± 7.2 vs 32.8 ± 4.6; P < 0.001), tender (16.7 ± 2.0 vs 8.4 ± 1.1; P < 0.01) and swollen (12.3 ± 2.3 vs 3.9 ± 0.8; P < 0.01) joint count, DAS28 (5.0 ± 0.4 vs 2.8 ± 0.2 P < 0.01) were significantly higher compare to group1. It was found that in group2 the higher T-lymphocyte amount (CD3) was due to CD4 higher quantity, at the same time CD8 amount was significantly lower (22.2 ± 1.5% vs 28.4 ± 1.7%, P < 0.05) compare to group1. This caused the immunoregulative index increasing and indicated in the lost of autoimmune process regulation, including B-lymphocytes (CD19) activation. The CD154 expression was significantly lower in the group2 (3.4 ± 0.4% vs 10.8 ± 2.8%, P < 0.05) compare to group1. The difference in autoimmune reaction indices wasn't significant between groups except antibody-producing B-lymphocytes (13.7 ± 1.5% vs 8.5 ± 1.0%, P < 0.05) and IgM RF serum level (2.9 ± 0.3 U/ml vs 1.6 ± 0.5 U/ml, P < 0.05), which were significantly higher in group1. The IL-17 level had a positive correlative connections with DAS28 (r = 0.7; P < 0.05), circulative immune complex level (r = 0.38; P < 0.05), anti-CCP antibodies (r = 0.4; P < 0.05), IgM RF (r = 0.41; P < 0.05), CD4 (r = 0.38; P < 0.05) and negative correlative connection with CD8 (r = -0.39; P < 0.05). Conclusions: The importance of IL-17 value in immuno-inflammatory and autoimmune reactions development through T-lymphocytes activation in RA pathogenesis was confirmed. Thus the influence on T-depended immuno-inflammatory reaction products synthesis could be a new therapeutic target of RA patients' management. Disclosure statement: All authors have declared no conflicts of interes
    • …
    corecore