19 research outputs found
Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts
The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT), brown adipose tissue (BAT) and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level
Integrative analysis of transcriptomics and clinical data uncovers the tumor- suppressive activity of MITF in prostate cancer
The dysregulation of gene expression is an enabling hallmark of cancer. Computational analysis of transcriptomics data from human cancer specimens, complemented with exhaustive clinical annotation, provides an opportunity to identify core regulators of the tumorigenic process. Here we exploit well-annotated clinical datasets of prostate cancer for the discovery of transcriptional regulators relevant to prostate cancer. Following this rationale, we identify Microphthalmia-associated transcription factor (MITF) as a prostate tumor suppressor among a subset of transcription factors. Importantly, we further interrogate transcriptomics and clinical data to refine MITF perturbation-based empirical assays and unveil Crystallin Alpha B (CRYAB) as an unprecedented direct target of the transcription factor that is, at least in part, responsible for its tumor-suppressive activity in prostate cancer. This evidence was supported by the enhanced prognostic potential of a signature based on the concomitant alteration of MITF and CRYAB in prostate cancer patients. In sum, our study provides proof-of-concept evidence of the potential of the bioinformatics screen of publicly available cancer patient databases as discovery platforms, and demonstrates that the MITF-CRYAB axis controls prostate cancer biology
Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression
Publisher Copyright: © 2022, The Author(s).Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies.Peer reviewe
Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer
Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit genuine and differential physical and biological properties compared to benign prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in PCa
Angiocrine polyamine production regulates adiposity.
Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid β-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.We thank members of the Endothelial Pathobiology and Microenvironment Group for
helpful discussions. We thank the CERCA Program/Generalitat de Catalunya and the
Josep Carreras Foundation for institutional support. The research leading to these results
has received funding from la Fundación BBVA (Ayuda Fundacion BBVA a Equipos de
Investigación CientÃfica 2019, PR19BIOMET0061) and from SAF2017-82072-ERC from
Ministerio de Ciencia, Innovación y Universidades (MCIU) (Spain). The laboratory
of M.G. is also supported by the research grants SAF2017-89116R-P (FEDER/EU)
co-funded by European Regional Developmental Fund (ERDF), a Way to Build Europe
and PID2020-116184RB-I00 from MCEI; by the Catalan Government through the
project 2017-SGR; PTEN Research Foundation (BRR-17-001); La Caixa Foundation
(HR19-00120 and HR21-00046); by la Asociación Española contra el Cancer-Grupos
Traslacionales (GCTRA18006CARR, also to A.C.); European Foundation for the Study
of Diabetes/Lilly research grant, also to M.C.); and by the People Programme (Marie
Curie Actions; grant agreement 317250) of the European Union’s Seventh Framework
Programme FP7/2007-2013 and the Marie Skłodowska-Curie (grant agreement 675392)
of the European Union’s Horizon 2020 research. The laboratory of A.C. is supported by
the Basque Department of Industry, Tourism and Trade (Elkartek) and the department
of education (IKERTALDE IT1106-16), the MCIU (PID2019-108787RB-I00 (FEDER/
EU); Severo Ochoa Excellence Accreditation SEV-2016-0644; Excellence Networks
SAF2016-81975-REDT), La Caixa Foundation (ID 100010434), under the agreement
LCF/PR/HR17, the Vencer el Cancer foundation and the European Research Council
(ERC) (consolidator grant 819242). CIBERONC was co-funded with FEDER funds and
funded by Instituto de Salud Carlos III (ISCIII). The laboratory of M.C. is supported by
the ERC under the European Union’s Horizon 2020 research and innovation programme
(grant agreement 725004) and CERCA Programme/Generalitat de Catalunya (M.C.).
The laboratory of D.S. is supported by research grants from MINECO (SAF2017-
83813-C3-1-R, also to L.H., cofounded by the ERDF), CIBEROBN (CB06/03/0001),
Government of Catalonia (2017SGR278) and Fundació La Marató de TV3 (201627-
30). The laboratory of R.N. is supported by FEDER/Ministerio de Ciencia, Innovación
y Universidades-Agencia Estatal de Investigación (RTI2018-099413-B-I00 and and
RED2018-102379-T), Xunta de Galicia (2016-PG057 and 2020-PG015), ERC under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
810331), Fundación BBVA, Fundacion Atresmedia and CIBEROBN, which is an
initiative of the ISCIII of Spain, which is supported by FEDER funds. The laboratory
of J.A.V. is supported by research grants from MICINN (RTI2018-099250-B100) and
by La Caixa Foundation (ID 100010434, LCF/PR/HR17/52150009). P.M.G.-R. is
supported by ISCIII grant PI15/00701 cofinanced by the ERDF, A Way to Build
Europe. Personal support was from Marie Curie ITN Actions (E.M.), Juan de la Cierva
(IJCI-2015-23455, P.V.), CONICYT fellowship from Chile (S.Z.), Vetenskapsradet
(Swedish Research Council, 2018-06591, L.G.) and NCI K99/R00 Pathway to
Independence Award (K99CA245122, P. Castel).S
Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer
Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkbl alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1(K781), was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination
The metabolic co-regulator PGC1α suppresses prostate cancer metastasis
Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α–ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment
Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression.
Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies
Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts
The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT), brown adipose tissue (BAT) and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level