57 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    MYC Rules: Leading Glutamine Metabolism toward a Distinct Cancer Cell Phenotype

    No full text
    Metabolic reprogramming and deregulated cellular energetics are hallmarks of cancer. The aberrant metabolism of cancer cells is thought to be the product of differential oncogene activation and tumor suppressor gene inactivation. MYC is one of the most important oncogenic drivers, its activation being reported in a variety of cancer types and sub-types, among which are the most prevalent and aggressive of all malignancies. This review aims to offer a comprehensive overview and highlight the importance of the c-Myc transcription factor on the regulation of metabolic pathways, in particular that of glutamine and glutaminolysis. Glutamine can be extensively metabolized into a variety of substrates and be integrated in a complex metabolic network inside the cell, from energy metabolism to nucleotide and non-essential amino acid synthesis. Together, understanding metabolic reprogramming and its underlying genetic makeup, such as MYC activation, allows for a better understanding of the cancer cell phenotype and thus of the potential vulnerabilities of cancers from a metabolic standpoint

    From in vivo to in vitro: Major metabolic alterations take place in hepatocytes during and following isolation.

    No full text
    The liver plays a key role in maintaining physiological homeostasis and hepatocytes are largely responsible for this. The use of isolated primary hepatocytes has become an essential tool for the study of nutrient physiology, xenobiotic metabolism and several liver pathologies. Since hepatocytes are removed from their normal environment, the isolation procedure and in vitro culture of primary hepatocytes is partially known to induce undesired metabolic changes. We aimed to perform a thorough metabolic profiling of primary cells before, during and after isolation using state-of-the-art techniques. Extensive metabolite measurements using HPLC were performed in situ in the liver, during hepatocyte isolation using the two-step collagenase perfusion method and during in vitro cell culture for up to 48 hours. Assessment of mitochondrial respiratory capacity and ATP-linked respiration of isolated primary hepatocytes was performed using extracellular flux analysis. Primary hepatocytes displayed a drastic decrease in antioxidative-related metabolites (NADPH, NADP, GSH and GSSG) during the isolation procedure when compared to the in situ liver (P<0.001). Parallel assessment of citric acid cycle activity showed a significant decrease of up to 95% in Acetyl-CoA, Isocitrate/Citrate ratio, Succinate, Fumarate and Malate in comparison to the in situ liver (P<0.001). While the levels of several cellular energetic metabolites such as Adenosine, AMP, ADP and ATP were found to be progressively reduced during the isolation procedure and cell culture (P<0.001), higher ATP/ADP ratio and energy charge level were observed when primary cells were cultured in vitro compared to the in situ liver (P<0.05). In addition, a significant decrease in the respiratory capacity occurred after 24 hours in culture. Interestingly, this was not associated with a significant modification of ATP-linked respiration. In conclusion, major metabolic alterations occur immediately after hepatocytes are removed from the liver. These changes persist or increase during in vitro culture. These observations need to be taken into account when using primary hepatocytes for the study of metabolism or liver physiopathology

    Protection against Acute Hepatocellular Injury Afforded by Liver Fibrosis Is Independent of T Lymphocytes.

    No full text
    Collagen produced during the process of liver fibrosis can induce a hepatocellular protective response through ERK1 signalling. However, the influence of T cells and associated cytokine production on this protection is unknown. In addition, athymic mice are frequently used in hepatocellular carcinoma xenograft experiments but current methods limit our ability to study the impact of liver fibrosis in this setting due to high mortality. Therefore, a mouse model of liver fibrosis lacking T cells was developed using Foxn1 nu/nu mice and progressive oral administration of thioacetamide (TAA) [0.01-0.02%] in drinking water. Fibrosis developed over a period of 16 weeks (alpha-SMA positive area: 20.0 ± 2.2%, preCol1a1 mRNA expression: 11.7 ± 4.1 fold changes, hydroxyproline content: 1041.2 ± 77μg/g of liver) at levels comparable to that of BALB/c mice that received intraperitoneal TAA injections [200 μg/g of body weight (bw)] (alpha-SMA positive area: 20.9 ± 2.9%, preCol1a1 mRNA expression: 13.1 ± 2.3 fold changes, hydroxyproline content: 931.6 ± 14.8μg/g of liver). No mortality was observed. Athymic mice showed phosphorylation of ERK1/2 during fibrogenesis (control 0.03 ± 0.01 vs 16 weeks 0.22 ± 0.06AU; P<0.05). The fibrosis-induced hepatoprotection against cytotoxic agents, as assessed histologically and by serum AST levels, was not affected by the absence of circulating T cells (anti-Fas JO2 [0.5μg/g bw] for 6h (fibrotic 4665 ± 2596 vs non-fibrotic 13953 ± 2260 U/L; P<0.05), APAP [750 mg/kg bw] for 6 hours (fibrotic 292 ± 66 U/L vs non-fibrotic 4086 ± 2205; P<0.01) and CCl4 [0.5mL/Kg bw] for 24h (fibrotic 888 ± 268 vs non-fibrotic 15673 ± 2782 U/L; P<0.001)). In conclusion, liver fibrosis can be induced in athymic Foxn1 nu/nu mice without early mortality. Liver fibrosis leads to ERK1/2 phosphorylation. Finally, circulating T lymphocytes and associated cytokines are not involved in the hepatocellular protection afforded by liver fibrosis

    Highly tumorigenic hepatocellular carcinoma cell line with cancer stem cell-like properties.

    No full text
    There are limited numbers of models to study hepatocellular carcinoma (HCC) in vivo in immunocompetent hosts. In an effort to develop a cell line with improved tumorigenicity, we derived a new cell line from Hepa1-6 cells through an in vivo passage in C57BL/6 mice. The resulting Dt81Hepa1-6 cell line showed enhanced tumorigenicity compared to Hepa1-6 with more frequent (28±12 vs. 0±0 lesions at 21 days) and more rapid tumor development (21 (100%) vs. 70 days (10%)) in C57BL/6 mice. The minimal Dt81Hepa1-6 cell number required to obtain visible tumors was 100,000 cells. The Dt81Hepa1-6 cell line showed high hepatotropism with subcutaneous injection leading to liver tumors without development of tumors in lungs or spleen. In vitro, Dt81Hepa1-6 cells showed increased anchorage-independent growth (34.7±6.8 vs. 12.3±3.3 colonies; P<0.05) and increased EpCAM (8.7±1.1 folds; P<0.01) and β-catenin (5.4±1.0 folds; P<0.01) expression. A significant proportion of Dt81Hepa1-6 cells expressed EpCAM compared to Hepa1-6 (34.8±1.1% vs 0.9±0.13%; P<0.001). Enriched EpCAM+ Dt81Hepa1-6 cells led to higher tumor load than EpCAM- Dt81Hepa1-6 cells (1093±74 vs 473±100 tumors; P<0.01). The in vivo selected Dt81Hepa1-6 cell line shows high liver specificity and increased tumorigenicity compared to Hepa1-6 cells. These properties are associated with increased expression of EpCAM and β-catenin confirming that EpCAM+ HCC cells comprise a subset with characteristics of tumor-initiating cells with stem/progenitor cell features. The Dt81Hepa1-6 cell line with its cancer stem cell-like properties will be a useful tool for the study of hepatocellular carcinoma in vivo

    Metabolomics-Guided Identification of a Distinctive Hepatocellular Carcinoma Signature

    No full text
    Background: Hepatocellular carcinoma (HCC) is a major contributor to cancer-related morbidity and mortality burdens globally. Given the fundamental metabolic activity of hepatocytes within the liver, hepatocarcinogenesis is bound to be characterized by alterations in metabolite profiles as a manifestation of metabolic reprogramming. Methods: HCC and adjacent non-tumoral liver specimens were obtained from patients after HCC resection. Global patterns in tissue metabolites were identified using non-targeted 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy whereas specific metabolites were quantified using targeted liquid chromatography–mass spectrometry (LC/MS). Results: Principal component analysis (PCA) within our 1H-NMR dataset identified a principal component (PC) one of 53.3%, along which the two sample groups were distinctively clustered. Univariate analysis of tissue specimens identified more than 150 metabolites significantly altered in HCC compared to non-tumoral liver. For LC/MS, PCA identified a PC1 of 45.2%, along which samples from HCC tissues and non-tumoral tissues were clearly separated. Supervised analysis (PLS–DA) identified decreases in tissue glutathione, succinate, glycerol-3-phosphate, alanine, malate, and AMP as the most important contributors to the metabolomic signature of HCC by LC/MS. Conclusions: Together, 1H-NMR and LC/MS metabolomics have the capacity to distinguish HCC from non-tumoral liver. The characterization of such distinct profiles of metabolite abundances underscores the major metabolic alterations that result from hepatocarcinogenesis

    Reduced levels of cellular energetic metabolites during isolation and cell culture.

    No full text
    <p>Quantification of total intracellular hepatic A) Adenosine, B) AMP, C) ADP, D) ATP and E) ATP/ADP ratio during the isolation procedure and cell culture for a period of up to 48 hours. F) Calculated energy charge values during isolation and <i>in vitro</i> culture. Values are ±SEM of 3 independent experiments. Asterisks indicate significance when compared to the <i>in situ</i> liver <i>(*P</i><0.05, <i>**P<</i>0.01, <i>***P</i><0.001).</p

    Protective effect of liver fibrosis in Foxn1 nu/nu mice against different cytotoxic agents.

    No full text
    <p>Dosage of serum AST and ALT levels from fibrotic Foxn1 nu/nu mice after TAA administration through drinking water [0.02%] for 16 weeks while non-fibrotic mice received normal drinking water (H<sub>2</sub>O). Cytotoxic agents were injected IP: CCl<sub>4</sub> [0.5 mL/kg bw] (sacrificed 24 hours following injection), Fas Jo2 antibody [0.5μg/g bw] (sacrificed 6 hours following injection) and APAP [750 mg/kg bw] (sacrifice 6 hours after injection). Results are expressed as mean ± SE. (*<i>P</i><0.05, **<i>P</i><0.01, ***<i>P</i><0.001)</p

    Activation of hepatic stellate cells.

    No full text
    <p>Histological alpha-SMA (green) immunofluorescent-stained livers from Foxn1 nu/nu mice (top) receiving (A) normal drinking water, (B) TAA drinking water [0.02%] for 4 weeks, (C) 8 weeks, (D) 12 weeks, (E) 16 weeks, (F) 16 weeks followed by 2 weeks or (G) 3 weeks of recovery and from BALB/c mice (bottom) IP injected with (H) saline or (I) TAA [200μg/g bw] for 12 weeks and (J) 2 weeks of recovery following TAA treatment. Nuclei were stained with Hoechst 33258 (blue). Microphotographs were obtained at a 100X magnification.</p
    corecore