1,600 research outputs found
Facing the music or burying our heads in the sand?: Adaptive emotion regulation in mid- and late-life
Psychological defense theories postulate that keeping threatening information out of awareness brings short-term reduction of anxiety at the cost of longer-term dysfunction. By contrast, Socioemotional Selectivity Theory suggests that preference for positively-valenced information is a manifestation of adaptive emotion regulation in later life. Using six decades of longitudinal data on 61 men, we examined links between emotion regulation indices informed by these distinct conceptualizations: defense patterns in earlier adulthood and selective memory for positively-valenced images in late life. Men who used more avoidant defenses in midlife recognized fewer emotionally-valenced and neutral images in a memory test 35-40 years later. Late-life satisfaction was positively linked with mid-life engaging defenses but negatively linked at the trend level with concurrent positivity bias
Evaluating system architectures for driving range estimation and charge planning for electric vehicles
Due to sparse charging infrastructure and short driving ranges, drivers of battery electric vehicles (BEVs) can experience range anxiety, which is the fear of stranding with an empty battery. To help eliminate range anxiety and make BEVs more attractive for customers, accurate range estimation methods need to be developed. In recent years, many publications have suggested machine learning algorithms as a fitting method to achieve accurate range estimations. However, these algorithms use a large amount of data and have high computational requirements. A traditional placement of the software within a vehicle\u27s electronic control unit could lead to high latencies and thus detrimental to user experience. But since modern vehicles are connected to a backend, where software modules can be implemented, high latencies can be prevented with intelligent distribution of the algorithm parts. On the other hand, communication between vehicle and backend can be slow or expensive. In this article, an intelligent deployment of a range estimation software based on ML is analyzed. We model hardware and software to enable performance evaluation in early stages of the development process. Based on simulations, different system architectures and module placements are then analyzed in terms of latency, network usage, energy usage, and cost. We show that a distributed system with cloudâbased module placement reduces the endâtoâend latency significantly, when compared with a traditional vehicleâbased placement. Furthermore, we show that network usage is significantly reduced. This intelligent system enables the application of complex, but accurate range estimation with low latencies, resulting in an improved user experience, which enhances the practicality and acceptance of BEVs
Changing patterns of malaria during 1996-2010 in an area of moderate transmission in Southern Senegal
<p>Abstract</p> <p>Background</p> <p>Malaria is reportedly receding in different epidemiological settings, but local long-term surveys are limited. At Mlomp dispensary in south-western Senegal, an area of moderate malaria transmission, year-round, clinically-suspected malaria was treated with monotherapy as per WHO and national policy in the 1990s. Since 2000, there has been a staggered deployment of artesunate-amodiaquine after parasitological confirmation; this was adopted nationally in 2006.</p> <p>Methods</p> <p>Data were extracted from clinic registers for the period between January 1996 and December 2010, analysed and modelled.</p> <p>Results</p> <p>Over the 15-year study period, the risk of malaria decreased about 32-times (from 0.4 to 0.012 episodes person-year), while anti-malarial treatments decreased 13-times (from 0.9 to 0.07 treatments person-year) and consultations for fever decreased 3-times (from 1.8 to 0.6 visits person-year). This was paralleled by changes in the age profile of malaria patients so that the risk of malaria is now almost uniformly distributed throughout life, while in the past malaria used to concern more children below 16 years of age.</p> <p>Conclusions</p> <p>This study provides direct evidence of malaria risk receding between 1996-2010 and becoming equal throughout life where transmission used to be moderate. Infection rates are no longer enough to sustain immunity. Temporally, this coincides with deploying artemisinin combinations on parasitological confirmation, but other contributing causes are unclear.</p
Egg excretion indicators for the measurement of soil-transmitted helminth response to treatment
BACKGROUND: Periodic administration of anthelmintic drugs is a cost-effective intervention for morbidity control of soil-transmitted helminth (STH) infections. However, with programs expanding, drug pressure potentially selecting for drug-resistant parasites increases. While monitoring anthelmintic drug efficacy is crucial to inform country control program strategies, different factors must be taken into consideration that influence drug efficacy and make it difficult to standardize treatment outcome measures. We aimed to identify suitable approaches to assess and compare the efficacy of different anthelmintic treatments. METHODOLOGY: We built an individual participant-level database from 11 randomized controlled trials and two observational studies in which subjects received single-agent or combination therapy, or placebo. Eggs per gram of stool were calculated from egg counts at baseline and post-treatment. Egg reduction rates (ERR; based on mean group egg counts) and individual-patient ERR (iERR) were utilized to express drug efficacy and analyzed after log-transformation with a linear mixed effect model. The analyses were separated by follow-up duration (14-21 and 22-45 days) after drug administration. PRINCIPAL FINDINGS: The 13 studies enrolled 5,759 STH stool-positive individuals; 5,688 received active medication or placebo contributing a total of 11,103 STH infections (65% had two or three concurrent infections), of whom 3,904 (8,503 infections) and 1,784 (2,550 infections) had efficacy assessed at 14-21 days and 22-45 days post-treatment, respectively. Neither the number of helminth co-infections nor duration of follow-up affected ERR for any helminth species. The number of participants treated with single-dose albendazole was 689 (18%), with single-dose mebendazole 658 (17%), and with albendazole-based co-administrations 775 (23%). The overall mean ERR assessed by day 14-21 for albendazole and mebendazole was 94.5% and 87.4%, respectively on Ascaris lumbricoides, 86.8% and 40.8% on hookworm, and 44.9% and 23.8% on Trichuris trichiura. The World Health Organization (WHO) recommended criteria for efficacy were met in 50%, 62%, and 33% studies of albendazole for A. lumbricoides, T. trichiura, and hookworm, respectively and 25% of mebendazole studies. iERR analyses showed similar results, with cure achieved in 92% of A. lumbricoides-infected subjects treated with albendazole and 93% with mebendazole; corresponding figures for hookworm were 70% and 17%, and for T. trichiura 22% and 20%. CONCLUSIONS/SIGNIFICANCE: Combining the traditional efficacy assessment using group averages with individual responses provides a more complete picture of how anthelmintic treatments perform. Most treatments analyzed fail to meet the WHO minimal criteria for efficacy based on group means. Drug combinations (i.e., albendazole-ivermectin and albendazole-oxantel pamoate) are promising treatments for STH infections
A theoretical and numerical study of a phase field higher-order active contour model of directed networks.
We address the problem of quasi-automatic extraction of directed networks, which have characteristic geometric features, from images. To include the necessary prior knowledge about these geometric features, we use a phase field higher-order active contour model of directed networks. The model has a large number of unphysical parameters (weights of energy terms), and can favour different geometric structures for different parameter values. To overcome this problem, we perform a stability analysis of a long, straight bar in order to find parameter ranges that favour networks. The resulting constraints necessary to produce stable networks eliminate some parameters, replace others by physical parameters such as network branch width, and place lower and upper bounds on the values of the rest. We validate the theoretical analysis via numerical experiments, and then apply the model to the problem of hydrographic network extraction from multi-spectral VHR satellite images
DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress.
Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2
Optokinetic stimulation rehabilitation in preventing seasickness
SummaryObjectivesSeasickness occurs when traveling on a boat: symptoms such as vomiting are very disturbing and may be responsible for discontinuing travel or occupation and can become life-threatening. The failure of classical treatment to prevent seasickness has motivated this retrospective study exploring optokinetic stimulation in reducing these symptoms.Patients and methodsExperimental training of 75 sailors with optokinetic stimulation attempted to reduce seasickness manifestations and determine the factors that could predict accommodation problems.ResultsEighty percent of the trained subjects were able to return on board. No predictive factors such as sex, occupation, degree of illness, number of treatment sessions, time to follow-up, and age were found to influence training efficacy.ConclusionOptokinetic stimulation appears to be promising in the treatment of seasickness. Nevertheless, statistically significant results have yet to demonstrate its efficacy
Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites
The positions of nucleosomes in eukaryotic genomes determine which parts of
the DNA sequence are readily accessible for regulatory proteins and which are
not. Genome-wide maps of nucleosome positions have revealed a salient pattern
around transcription start sites, involving a nucleosome-free region (NFR)
flanked by a pronounced periodic pattern in the average nucleosome density.
While the periodic pattern clearly reflects well-positioned nucleosomes, the
positioning mechanism is less clear. A recent experimental study by Mavrich et
al. argued that the pattern observed in S. cerevisiae is qualitatively
consistent with a `barrier nucleosome model', in which the oscillatory pattern
is created by the statistical positioning mechanism of Kornberg and Stryer. On
the other hand, there is clear evidence for intrinsic sequence preferences of
nucleosomes, and it is unclear to what extent these sequence preferences affect
the observed pattern. To test the barrier nucleosome model, we quantitatively
analyze yeast nucleosome positioning data both up- and downstream from NFRs.
Our analysis is based on the Tonks model of statistical physics which
quantifies the interplay between the excluded-volume interaction of nucleosomes
and their positional entropy. We find that although the typical patterns on the
two sides of the NFR are different, they are both quantitatively described by
the same physical model, with the same parameters, but different boundary
conditions. The inferred boundary conditions suggest that the first nucleosome
downstream from the NFR (the +1 nucleosome) is typically directly positioned
while the first nucleosome upstream is statistically positioned via a
nucleosome-repelling DNA region. These boundary conditions, which can be
locally encoded into the genome sequence, significantly shape the statistical
distribution of nucleosomes over a range of up to ~1000 bp to each side.Comment: includes supporting materia
3-D Shape Estimation of DNA Molecules from Stereo Cryo-Electron Micro-Graphs Using a Projection-Steerable Snake
We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well
- âŠ