124 research outputs found

    Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    Get PDF
    We study synchronization in scalar nonlinear systems connected over a linear network with stochastic uncertainty in their interactions. We provide a sufficient condition for the synchronization of such network systems expressed in terms of the parameters of the nonlinear scalar dynamics, the second and largest eigenvalues of the mean interconnection Laplacian, and the variance of the stochastic uncertainty. The sufficient condition is independent of network size thereby making it attractive for verification of synchronization in a large size network. The main contribution of this paper is to provide analytical characterization for the interplay of roles played by the internal dynamics of the nonlinear system, network topology, and uncertainty statistics in network synchronization. We show there exist important tradeoffs between these various network parameters necessary to achieve synchronization. We show for nearest neighbor networks with stochastic uncertainty in interactions there exists an optimal number of neighbors with maximum margin for synchronization. This proves in the presence of interaction uncertainty, too many connections among network components is just as harmful for synchronization as the lack of connection. We provide an analytical formula for the optimal gain required to achieve maximum synchronization margin thereby allowing us to compare various complex network topology for their synchronization property

    Stochastic Stability Analysis of Discrete Time System Using Lyapunov Measure

    Full text link
    In this paper, we study the stability problem of a stochastic, nonlinear, discrete-time system. We introduce a linear transfer operator-based Lyapunov measure as a new tool for stability verification of stochastic systems. Weaker set-theoretic notion of almost everywhere stochastic stability is introduced and verified, using Lyapunov measure-based stochastic stability theorems. Furthermore, connection between Lyapunov functions, a popular tool for stochastic stability verification, and Lyapunov measures is established. Using the duality property between the linear transfer Perron-Frobenius and Koopman operators, we show the Lyapunov measure and Lyapunov function used for the verification of stochastic stability are dual to each other. Set-oriented numerical methods are proposed for the finite dimensional approximation of the Perron-Frobenius operator; hence, Lyapunov measure is proposed. Stability results in finite dimensional approximation space are also presented. Finite dimensional approximation is shown to introduce further weaker notion of stability referred to as coarse stochastic stability. The results in this paper extend our earlier work on the use of Lyapunov measures for almost everywhere stability verification of deterministic dynamical systems ("Lyapunov Measure for Almost Everywhere Stability", {\it IEEE Trans. on Automatic Control}, Vol. 53, No. 1, Feb. 2008).Comment: Proceedings of American Control Conference, Chicago IL, 201

    Data-driven Identification and Prediction of Power System Dynamics Using Linear Operators

    Get PDF
    In this paper, we propose linear operator theoretic framework involving Koopman operator for the data-driven identification of power system dynamics. We explicitly account for noise in the time series measurement data and propose robust approach for data-driven approximation of Koopman operator for the identification of nonlinear power system dynamics. The identified model is used for the prediction of state trajectories in the power system. The application of the framework is illustrated using an IEEE nine bus test system.Comment: Accepted for publication in IEEE Power and Energy System General Meeting 201

    A Transfer Operator Methodology for Optimal Sensor Placement Accounting for Uncertainty

    Get PDF
    Sensors in buildings are used for a wide variety of applications such as monitoring air quality, contaminants, indoor temperature, and relative humidity. These are used for accessing and ensuring indoor air quality, and also for ensuring safety in the event of chemical and biological attacks. It follows that optimal placement of sensors become important to accurately monitor contaminant levels in the indoor environment. However, contaminant transport inside the indoor environment is governed by the indoor flow conditions which are affected by various uncertainties associated with the building systems including occupancy and boundary fluxes. Therefore, it is important to account for all associated uncertainties while designing the sensor layout. The transfer operator based framework provides an effective way to identify optimal placement of sensors. Previous work has been limited to sensor placements under deterministic scenarios. In this work we extend the transfer operator based approach for optimal sensor placement while accounting for building systems uncertainties. The methodology provides a probabilistic metric to gauge coverage under uncertain conditions. We illustrate the capabilities of the framework with examples exhibiting boundary flux uncertainty

    Optimal Stabilization using Lyapunov Measures

    Full text link
    Numerical solutions for the optimal feedback stabilization of discrete time dynamical systems is the focus of this paper. Set-theoretic notion of almost everywhere stability introduced by the Lyapunov measure, weaker than conventional Lyapunov function-based stabilization methods, is used for optimal stabilization. The linear Perron-Frobenius transfer operator is used to pose the optimal stabilization problem as an infinite dimensional linear program. Set-oriented numerical methods are used to obtain the finite dimensional approximation of the linear program. We provide conditions for the existence of stabilizing feedback controls and show the optimal stabilizing feedback control can be obtained as a solution of a finite dimensional linear program. The approach is demonstrated on stabilization of period two orbit in a controlled standard map
    corecore