124 research outputs found
Limitations and tradeoffs in synchronization of large-scale networks with uncertain links
We study synchronization in scalar nonlinear systems connected over a linear
network with stochastic uncertainty in their interactions. We provide a
sufficient condition for the synchronization of such network systems expressed
in terms of the parameters of the nonlinear scalar dynamics, the second and
largest eigenvalues of the mean interconnection Laplacian, and the variance of
the stochastic uncertainty. The sufficient condition is independent of network
size thereby making it attractive for verification of synchronization in a
large size network. The main contribution of this paper is to provide
analytical characterization for the interplay of roles played by the internal
dynamics of the nonlinear system, network topology, and uncertainty statistics
in network synchronization. We show there exist important tradeoffs between
these various network parameters necessary to achieve synchronization. We show
for nearest neighbor networks with stochastic uncertainty in interactions there
exists an optimal number of neighbors with maximum margin for synchronization.
This proves in the presence of interaction uncertainty, too many connections
among network components is just as harmful for synchronization as the lack of
connection. We provide an analytical formula for the optimal gain required to
achieve maximum synchronization margin thereby allowing us to compare various
complex network topology for their synchronization property
Stochastic Stability Analysis of Discrete Time System Using Lyapunov Measure
In this paper, we study the stability problem of a stochastic, nonlinear,
discrete-time system. We introduce a linear transfer operator-based Lyapunov
measure as a new tool for stability verification of stochastic systems. Weaker
set-theoretic notion of almost everywhere stochastic stability is introduced
and verified, using Lyapunov measure-based stochastic stability theorems.
Furthermore, connection between Lyapunov functions, a popular tool for
stochastic stability verification, and Lyapunov measures is established. Using
the duality property between the linear transfer Perron-Frobenius and Koopman
operators, we show the Lyapunov measure and Lyapunov function used for the
verification of stochastic stability are dual to each other. Set-oriented
numerical methods are proposed for the finite dimensional approximation of the
Perron-Frobenius operator; hence, Lyapunov measure is proposed. Stability
results in finite dimensional approximation space are also presented. Finite
dimensional approximation is shown to introduce further weaker notion of
stability referred to as coarse stochastic stability. The results in this paper
extend our earlier work on the use of Lyapunov measures for almost everywhere
stability verification of deterministic dynamical systems ("Lyapunov Measure
for Almost Everywhere Stability", {\it IEEE Trans. on Automatic Control}, Vol.
53, No. 1, Feb. 2008).Comment: Proceedings of American Control Conference, Chicago IL, 201
Data-driven Identification and Prediction of Power System Dynamics Using Linear Operators
In this paper, we propose linear operator theoretic framework involving
Koopman operator for the data-driven identification of power system dynamics.
We explicitly account for noise in the time series measurement data and propose
robust approach for data-driven approximation of Koopman operator for the
identification of nonlinear power system dynamics. The identified model is used
for the prediction of state trajectories in the power system. The application
of the framework is illustrated using an IEEE nine bus test system.Comment: Accepted for publication in IEEE Power and Energy System General
Meeting 201
A Transfer Operator Methodology for Optimal Sensor Placement Accounting for Uncertainty
Sensors in buildings are used for a wide variety of applications such as
monitoring air quality, contaminants, indoor temperature, and relative
humidity. These are used for accessing and ensuring indoor air quality, and
also for ensuring safety in the event of chemical and biological attacks. It
follows that optimal placement of sensors become important to accurately
monitor contaminant levels in the indoor environment. However, contaminant
transport inside the indoor environment is governed by the indoor flow
conditions which are affected by various uncertainties associated with the
building systems including occupancy and boundary fluxes. Therefore, it is
important to account for all associated uncertainties while designing the
sensor layout. The transfer operator based framework provides an effective way
to identify optimal placement of sensors. Previous work has been limited to
sensor placements under deterministic scenarios. In this work we extend the
transfer operator based approach for optimal sensor placement while accounting
for building systems uncertainties. The methodology provides a probabilistic
metric to gauge coverage under uncertain conditions. We illustrate the
capabilities of the framework with examples exhibiting boundary flux
uncertainty
Optimal Stabilization using Lyapunov Measures
Numerical solutions for the optimal feedback stabilization of discrete time
dynamical systems is the focus of this paper. Set-theoretic notion of almost
everywhere stability introduced by the Lyapunov measure, weaker than
conventional Lyapunov function-based stabilization methods, is used for optimal
stabilization. The linear Perron-Frobenius transfer operator is used to pose
the optimal stabilization problem as an infinite dimensional linear program.
Set-oriented numerical methods are used to obtain the finite dimensional
approximation of the linear program. We provide conditions for the existence of
stabilizing feedback controls and show the optimal stabilizing feedback control
can be obtained as a solution of a finite dimensional linear program. The
approach is demonstrated on stabilization of period two orbit in a controlled
standard map
- …